Package ‘maptools’
February 20, 2015

Version 0.8-34
Date 2015-02-03
Title Tools for Reading and Handling Spatial Objects
Encoding UTF-8
Depends R (>= 2.10), sp (>= 1.0-11)
Imports foreign (>= 0.8), methods, grid, lattice, stats
Suggests rgeos (>= 0.1-8), spatstat (>= 1.18), PBSmapping,
 RColorBrewer
Enhances maps, gpclib, RArcInfo

Description Set of tools for manipulating and reading geographic data, in particular ESRI shapefiles; C code used from shapelib. It includes binary access to GSHHG shoreline files. The package also provides interface wrappers for exchanging spatial objects with packages such as PBSmapping, spatstat, maps, RArcInfo, Stata tmap, WinBUGS, Mondrian, and others.

License GPL (>= 2)

URL http://r-forge.r-project.org/projects/maptools/

Author Roger Bivand [cre, aut],
 Nicholas Lewin-Koh [aut],
 Edzer Pebesma [ctb],
 Eric Archer [ctb],
 Adrian Baddeley [ctb],
 Hans-Jörg Bibiko [ctb],
 Steven Brey [ctb],
 Jonathan Callahan [ctb],
 German Carrillo [ctb],
 Stéphane Dray [ctb],
 David Forrest [ctb],
 Michael Friendly [ctb],
 Patrick Giraudoux [ctb],
 Duncan Golicher [ctb],
 Virgilio Gómez Rubio [ctb],
 Patrick Hausmann [ctb],
 Karl Ove Hufthammer [ctb],
Thomas Jagger [ctb],
Sebastian Luque [ctb],
Don MacQueen [ctb],
Andrew Niccolai [ctb],
Edzer Pebesma [ctb],
Oscar Perpiñán Lamigueiro [ctb],
Tom Short [ctb],
Greg Snow [ctb],
Ben Stabler [ctb],
Murray Stokely [ctb],
Rolf Turner [ctb]

Maintainer Roger Bivand <Roger.Bivand@nhh.no>

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-02-03 20:59:28

R topics documented:

as.ppp .. 3
CCmaps .. 6
checkPolygonsHoles 7
ContourLines2SLDF 10
dotsInPolys .. 11
dotlass-methods 12
gcDestination 14
getinfo.shape 15
getKMLcoodinates 16
GE_SpatialGrid 17
gpcholes ... 19
gzAzimuth .. 20
kmlLine ... 21
kmlLines ... 23
kmlOverlay .. 24
kmlPoints ... 26
kmlPolygon ... 27
kmlPolygons .. 29
leglabs ... 31
lineLabel ... 32
map2SpatialPolygons 34
nearestPointOnLine 36
nearestPointOnSegment 37
nowrapRecenter 38
pal2SpatialPolygons 39
panel.pointLabel 40
pointLabel 42
ppp-class ... 44
as.ppp

readAsciiGrid .. 45
readGPS .. 46
readShapeLines ... 48
readShapePoints ... 49
readShapePoly .. 50
readShapeSpatial ... 52
readSplus ... 54
Rgshhs ... 55
snapPointsToLines .. 58
sp2Mondrian .. 59
sp2tmap .. 60
sp2WB ... 61
SpatialLines2PolySet .. 62
SpatialLinesMidPoints .. 63
spCbind-methods .. 64
SplashDams ... 65
spRbind-methods .. 66
state.vbm .. 67
sun-methods ... 68
symbolsInPolys .. 71
thinnedSpatialPoly .. 72
unionSpatialPolygons .. 73
wrld_simpl .. 75

Index

76

as.ppp coercion between sp objects and spatstat objects

Description

S4-style as() coercion works between objects of S4 sp classes to spatstat S3 classes; direct function
calls may also be used.

Usage

as.SpatialPoints.ppp(from)
as.SpatialPointsDataFrame.ppp(from)
as.SpatialGridDataFrame.ppp(from)
as.SpatialGridDataFrame.im(from)
as.psp.Line(from, ..., window=NULL, marks=NULL, fatal)
as.psp.Lines(from, ..., window=NULL, marks=NULL, fatal)
as.psp.SpatialLines(from, ..., window=NULL, marks=NULL, characterMarks
 = FALSE, fatal)
as.psp.SpatialLinesDataFrame(from, ..., window=NULL, marks=NULL, fatal)
as.SpatialLines.psp(from)
as.SpatialPolygons.tess(x)
as.SpatialPolygons.owin(x)
Arguments

from, x object to coerce from
... other arguments to be passed through
window window as defined in the spatstat package
marks marks as defined in the spatstat package
characterMarks default FALSE, if TRUE, do not convert NULL marks to factor from character
fatal formal coercion argument

Methods

coerce signature(from = "SpatialPoints", to = "ppp")
coerce signature(from = "SpatialPointsDataFrame", to = "ppp")
coerce signature(from = "Line", to = "psp")
coerce signature(from = "Lines", to = "psp")
coerce signature(from = "SpatialLines", to = "psp")
coerce signature(from = "SpatialLinesDataFrame", to = "psp")
coerce signature(from = "psp", to = "SpatialLines")
coerce signature(from = "SpatialGridDataFrame", to = "ppp")
coerce signature(from = "SpatialPolygons", to = "owin")
coerce signature(from = "SpatialPixelsDataFrame", to = "owin")
coerce signature(from = "SpatialGridDataFrame", to = "owin")
coerce signature(from = "SpatialGridDataFrame", to = "im")
coerce signature(from = "im", to = "SpatialGridDataFrame")
coerce signature(from = "ppp", to = "SpatialGridDataFrame")
coerce signature(from = "ppp", to = "SpatialPointsDataFrame")
coerce signature(from = "ppp", to = "SpatialPoints")
coerce signature(from = "owin", to = "SpatialPolygons")
coerce signature(from = "tess", to = "SpatialPolygons")

Note

When coercing a SpatialPolygons object to an owin object, full topology checking is enabled by default. To avoid checking, set spatstat.options(checkpolygons=FALSE) (from spatstat(1.14-6)). To perform the checking later, owinpolycheck(W, verbose=TRUE).

Author(s)

Edzer Pebesma <edzer.pebesma@uni-muenster.de>, Roger Bivand
Examples

library(spatstat)
data(meuse)
coordinates(meuse) = ~x+y
zn1 <- as(meuse["zinc"], "ppp")
zn1
plot(zn1)
as(as(meuse, "SpatialPoints"), "ppp")
data(meuse.grid)
gridded(meuse.grid) = ~x+y
mg_owin <- as(meuse.grid, "owin")
zn1a <- ppp(x=zn1$x, y=zn1$y, marks=zn1$marks, window=mg_owin)
zn1a
plot(zn1a)
rev_ppp_SP <- as.SpatialPoints.ppp(zn1a)
summary(rev_ppp_SP)
rev_ppp_SPDF <- as.SpatialPointsDataFrame.ppp(zn1a)
summary(rev_ppp_SPDF)
rev_ppp_SGDF <- as.SpatialGridDataFrame.ppp(zn1a)
summary(rev_ppp_SGDF)
data(meuse.riv)
mr <- Line(meuse.riv)
mr_psp <- as(mr, "spatial")
mr_psp
plot(mr_psp)
xx_back <- as(mr_psp, "SpatialLines")
plot(xx_back)
xx <- readShapelines(system.file("shapes/fylk-val.shp", package="maptools")[1],
 proj4string=CRS("+proj=utm +zone=33 +datum=WGS84"))
xx_psp <- as(xx, "spatial")
xx_psp
plot(xx_psp)
xx_back <- as(xx_psp, "SpatialLines")
plot(xx_back)
mg_owin <- as(as(meuse.grid["ffreq"], "SpatialPixelsDataFrame"), "owin")
mg_owin
ho_sp <- SpatialPolygons(list(Polygons(list(Polygon(cbind(c(0,1,1,0),
 c(0,0,1,0)), Polygon(cbind(c(0.6,0.4,0.4,0.6),
 c(0.2,0.4,0.4,0.2)), hole=TRUE)), ID="ho")))
plot(ho_sp, col="red", pbg="pink")
ho <- as(ho_sp, "owin")
plot(ho)
pp <- runifpoint(500, win=ho)
plot(pp)
ho_orig <- owin(poly=list(list(x=c(0,1,1,0), y=c(0,0,1,1)),
 list(x=c(0.6,0.4,0.4,0.6), y=c(0.2,0.2,0.4,0.4))))
identical(ho, ho_orig)
ho_sp1 <- as(ho, "SpatialPolygons")
all.equal(ho_sp, ho_sp1, check.attributes=FALSE)
A <- tess(xgrid=0:4,ygrid=0:4)
A_sp <- as(A, "SpatialPolygons")
plot(A_sp)
text(coordinates(A_sp), labels=row.names(A_sp), cex=0.6)
mg_dist <- meuse.grid["dist"]
fullgrid(mg_dist) <- TRUE
image(mg_dist, axes=TRUE)
mg_im <- as(mg_dist, "im")
plot(mg_im)
mg2 <- as.SpatialGridDataFrame.im(mg_im)
image(mg2, axes=TRUE)

CCmaps

Conditioned choropleth maps

Conditioned choropleth maps permit the conditioning of a map of a variable on the values of one or two other variables coded as factors or shingles. This function uses `spplot` after constructing multiple subsets of the variable of interest defined by the intervals given by the conditioning variables.

Usage

```r
CCmaps(obj, zcol = NULL, cvar = NULL, cvar.names = NULL, ..., names.attr,
scales = list(draw = FALSE), xlab = NULL, ylab = NULL,
aspect = mapasp(obj, xlim, ylim), sp.layout = NULL, xlim = bbox(obj)[1, ],
ylim = bbox(obj)[2, ])
```  

Arguments

- **obj**: object of class `SpatialPolygonsDataFrame`
- **zcol**: single variable name as string
- **cvar**: a list of one or two conditioning variables, which should be of class factor or shingle
- **cvar.names**: names for conditioning variables, if not given, the names of the variables in the `cvar` list
- **...**: other arguments passed to `spplot` and `levelplot`
- **names.attr**: names to use in panel, if different from `zcol` names
- **scales**: scales argument to be passed to Lattice plots; use `list(draw = TRUE)` to draw axes scales
- **xlab**: label for x-axis
- **ylab**: label for y-axis
- **aspect**: aspect ratio for spatial axes; defaults to "iso" (one unit on the x-axis equals one unit on the y-axis) but may be set to more suitable values if the data are e.g. if coordinates are latitude/longitude
- **sp.layout**: NULL or list; see `spplot`
- **xlim**: numeric; x-axis limits
- **ylim**: numeric; y-axis limits
checkPolygonsHoles

Value

The function returns a `SpatialPolygonsDataFrame` object with the zcol variable and the partitions of the cvars list variables invisibly.

Author(s)

Roger Bivand

References

See Also

`spplot`

Examples

```r
nc.sids <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[[1]], IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
nc.sids$SID74 <- sqrt(1000)*(sqrt(nc.sids$SID74/nc.sids$BIR74) + sqrt(nc.sids$SID74+1)/nc.sids$BIR74))
nc.sids$NWBR74 <- sqrt(1000)*(sqrt(nc.sids$NWBR74/nc.sids$BIR74) + sqrt(nc.sids$NWBR74+1)/nc.sids$BIR74))
library(lattice)
sh_nw <- equal.count(nc.sids$ft.NWBR74, number=4, overlap=1/5)
CCmaps(nc.sids, "ft.SID74", list("Nonwhite_births"=sh_nw), col.regions=colorRampPalette(c("yellow", "brown"))(20), main="Transformed SIDS rates 1974-8")
```

checkPolygonsHoles Check holes in Polygons objects

Description

The function checks holes in Polygons objects. Use of the rgeos package functions is preferred, and if rgeos is available, they will be used automatically. In this case, member Polygon objects are checked against each other for containment, and the returned Polygons object has component hole slots set appropriately. In addition, the output Polygons object may be provided with a comment string, encoding the external and internal rings. For gpclib use, see details below.
checkPolygonsHoles

Usage

checkPolygonsHoles(x, properly=TRUE, avoidGEOS=FALSE, useSTRtree=FALSE)
gpclibPermitStatus()
gpclibPermit()
rgeosStatus()

Arguments

x An Polygons object as defined in package sp
properly default TRUE, use gContainsProperly rather than gContains
avoidGEOS default FALSE; if TRUE force use of gpclib even when rgeos is available
useSTRtree default FALSE, if TRUE, use rgeos STRtree in checking holes, which is much faster, but uses a lot of memory and does not release it on completion (work in progress)

Details

If the gpclib package is used, an intersection between a gpc.poly object with one or more polygon contours and its bounding box is used to set the hole flag. The function will set single polygon contours to hole=FALSE, and if multiple polygon contours are holes, will set them TRUE. The gpclibPermit function is used to choose to permit the use of gpclib if installed, and gpclibPermitStatus reports its status. The licence for gpclib is not Free or Open Source and explicitly forbids commercial use. See library(help=gpclib).

Value

An Polygons object re-created from the input object.

Author(s)

Roger Bivand

Examples

if (rgeosStatus()) {
nc1 <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]],
proj4string=CRS("+proj=longlat +ellps=clrk66"))
pl <- slot(nc1, "polygons")
sapply(slot(pl[[4]], "Polygons"), function(x) slot(x, "hole"))
pl[[4]] <- PolygonList(slot(slot(slot(slot(pl[[4]], "Polygons"))[1], Polygon(slot(slot(slot(slot(pl[[4]], "Polygons"))[2], "coords"), hole=TRUE), slot(slot(slot(slot(pl[[4]], "Polygons"))[3]), slot(pl[[4]], "ID")))
sapply(slot(slot(pl[[4]], "Polygons"), function(x) slot(x, "hole"))
pl_new <- lapply(pl, checkPolygonsHoles)
sapply(slot(slot(pl_new[[4]], "Polygons"), function(x) slot(x, "hole"))
srs <- slot(slot(slot(pl[[1]], "Polygons"))[1], "coords")
hle2 <- structure(c(-81.64093, -81.38380, -81.34165, -81.66633, -81.64093,
36.57865, 36.57234, 36.47663, 36.47894, 36.57865), .Dim = as.integer(c(5, 2)))
hle3 <- structure(c(-81.47759, -81.39118, -81.38466, -81.46705, -81.47759,
```R
checkPolygonsHoles

36.56289, 36.55659, 36.49907, 36.50380, 36.56289), .Dim = as.integer(c(5, 2)))
x <- Polygons(list(Polygon(srs), Polygon(hle2), Polygon(hle3)),
  ID=slot(pl[[1]], "ID"))
sapply(slot(x, "Polygons"), function(x) slot(x, "hole"))
res <- checkPolygonsHoles(x)
sapply(slot(res, "Polygons"), function(x) slot(x, "hole"))
## Not run:
opar <- par(mfrow=c(1,2))
SPx <- SpatialPolygons(list(x))
plot(SPx)
text(t(sapply(slot(x, "Polygons"), function(i) slot(i, "labpt"))),
  labels=sapply(slot(x, "Polygons"), function(i) slot(i, "hole"), cex=0.6)
  title(xlab="Hole slot values before checking")
SPres <- SpatialPolygons(list(res))
plot(SPres)
text(t(sapply(slot(res, "Polygons"), function(i) slot(i, "labpt"))),
  labels=sapply(slot(res, "Polygons"), function(i) slot(i, "hole"), cex=0.6)
  title(xlab="Hole slot values after checking")
par(opar)
p1 <- Polygon(cbind(x=c(0, 0, 10, 10, 0), y=c(0, 10, 10, 0, 0))) # I
p2 <- Polygon(cbind(x=c(3, 3, 7, 7, 3), y=c(3, 3, 7, 7, 3))) # H
p8 <- Polygon(cbind(x=c(1, 1, 2, 2, 1), y=c(1, 2, 2, 1, 1))) # H
p9 <- Polygon(cbind(x=c(1, 2, 2, 1), y=c(5, 6, 6, 5, 5))) # H
p3 <- Polygon(cbind(x=c(20, 20, 30, 30, 20, 20), y=c(20, 30, 30, 20, 20))) # I
p4 <- Polygon(cbind(x=c(21, 21, 29, 29, 21), y=c(21, 29, 29, 21, 21))) # H
p14 <- Polygon(cbind(x=c(21, 21, 29, 29, 21), y=c(21, 29, 29, 21, 21))) # H
p5 <- Polygon(cbind(x=c(22, 22, 28, 28, 22), y=c(22, 28, 28, 22, 22))) # I
p15 <- Polygon(cbind(x=c(22, 22, 28, 28, 22), y=c(22, 28, 28, 22, 22))) # I
p6 <- Polygon(cbind(x=c(23, 23, 27, 27, 23, 23), y=c(23, 27, 27, 23, 23))) # H
p7 <- Polygon(cbind(x=c(13, 13, 17, 17, 13), y=c(13, 17, 17, 13, 13))) # I
p10 <- Polygon(cbind(x=c(24, 24, 26, 26, 24), y=c(24, 26, 26, 24, 24))) # I
p11 <- Polygon(cbind(x=c(24.25, 24.25, 25.75, 25.75, 24.25),
  y=c(24.25, 25.75, 25.75, 24.25, 24.25))) # H
p12 <- Polygon(cbind(x=c(24.5, 24.5, 25.5, 25.5, 24.5),
  y=c(24.5, 25.5, 24.5, 24.5, 24.5))) # I
p13 <- Polygon(cbind(x=c(24.75, 24.75, 25.25, 25.25, 24.75),
  y=c(24.75, 25.25, 25.25, 24.75, 24.75))) # H
lp <- list(p1, p2, p13, p7, p6, p5, p4, p3, p8, p11, p12, p9, p10, p14, p15)
#   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   0 1 1 0 6 0 8 0 1 13 0 1 0 7 6
#   I H I I I I H I H I I I I I I I
pls <- Polygons(lp, ID="1")
comment(pls)
pls1 <- checkPolygonsHoles(pls)
comment(pls1)
opar <- par(mfrow=c(1,2))
plot(SpatialPolygons(list(pls)), col="magenta", pbg="cyan", usePolyPath=FALSE)
  title(xlab="Hole slot values before checking")
plot(SpatialPolygons(list(pls1)), col="magenta", pbg="cyan", usePolyPath=FALSE)
  title(xlab="Hole slot values after checking")
par(opar)
## End(Not run)
```
Converter functions to build SpatialLinesDataFrame objects

Description
These functions show how to build converters to SpatialLinesDataFrame objects: ArcObj2SLDF from the list returned by the get.arcdata function in the RArcInfo package; ContourLines2SLDF from the list returned by the contourLines function in the graphics package (here the data frame is just the contour levels, with one Lines object made up of at least one Line object per level); and MapGen2SL reads a file in "Mapgen" format into a SpatialLines object.

Usage
ArcObj2SLDF(arc, proj4string = CRS(as.character(NA)), IDs)
ContourLines2SLDF(cl, proj4string = CRS(as.character(NA)))
MapGen2SL(file, proj4string = CRS(as.character(NA)))

Arguments

arc a list returned by the get.arcdata function in the RArcInfo package
IDs vector of unique character identifiers; if not given, suitable defaults will be used, and the same values inserted as data slot row names
cl a list returned by the contourLines function in the graphics package
proj4string Object of class "CRS"; see CRS-class
file filename of a file containing a Mapgen line data set

Value
A SpatialLinesDataFrame object

Note
Coastlines of varying resolution may be chosen online and downloaded in "Mapgen" text format from http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html, most conveniently using the interactive selection tool, but please note the 500,000 point limit on downloads, which is easy to exceed.

Author(s)
Roger Bivand; Edzer Pebesma

See Also
SpatialLines-class
dotsInPolys

Put dots in polygons

Description

Make point coordinates for a dot density map

Usage

dotsInPolys(pl, x, f = "random", offset, compatible = FALSE)

Arguments

- `pl`: an object of class SpatialPolygons or SpatialPolygonsDataFrame
- `x`: integer vector of counts of same length as `pl` for dots
- `f`: type of sampling used to place points in polygons, either "random" or "regular"
- `offset`: for regular sampling only: the offset (position) of the regular grid; if not set, `c(0.5, 0.5)`, that is the returned grid is not random
- `compatible`: what to return, if TRUE a a list of matrices of point coordinates, one matrix for each member of `pl`, if false a SpatialPointsDataFrame with polygon ID values

Details

With `f="random"`, the dots are placed in the polygon at random, `f="regular"` - in a grid pattern (number of dots not guaranteed to be the same as the count). When the polygon is made up of more than one part, the dots will be placed in proportion to the relative areas of the clockwise rings (anticlockwise are taken as holes). From maptools release 0.5-2, correction is made for holes in the placing of the dots, but depends on hole values being correctly set, which they often are not.
Value

If compatible=TRUE, the function returns a list of matrices of point coordinates, one matrix for each member of pl. If x[i] is zero, the list element is NULL, and can be tested when plotting - see the examples. If compatible=FALSE (default), it returns a SpatialPointsDataFrame with polygon ID values as the only column in the data slot.

Note

Waller and Gotway (2004) Applied Spatial Statistics for Public Health Data (Wiley, Hoboken, NJ) explicitly warn that care is needed in plotting and interpreting dot density maps (pp. 81-83)

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>

See Also

spsample

Examples

```r
nc_sp <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]],
  proj4string=CRS("+proj=longlat +ellps=clrk66"))
## Not run:
pls <- slot(nc_sp, "polygons")
pls_new <- lapply(pls, checkPolygonsHoles)
nc_sp <- SpatialPolygonsDataFrame(SpatialPolygons(pls_new,
  proj4string=CRS(proj4string(nc_sp))), data=as(nc_sp, "data.frame"))

## End(Not run)
try1 <- dotsInPolys(nc_sp, as.integer(nc_sp$SID74))
plot(nc_sp, axes=TRUE)
plot(try1, add=TRUE, pch=18, col="red")
try2 <- dotsInPolys(nc_sp, as.integer(nc_sp$SID74), f="regular")
plot(nc_sp, axes=TRUE)
plot(try2, add=TRUE, pch=18, col="red")
```

elide-methods

Methods for Function elide in Package ‘maptools’

Description

Methods for function elide to translate and disguise coordinate placing in the real world.

Usage

```
elide(obj, ...)
```
elide-methods

Arguments

obj object to be elided
... other arguments:
 bb if NULL, uses bounding box of object, otherwise the given bounding box
 shift values to shift the coordinates of the input object; this is made ineffective
 by the scale argument
 reflect reverse coordinate axes
 scale if NULL, coordinates not scaled; if TRUE, the longer dimension is scaled
 to lie within [0,1] and aspect maintained; if a scalar, the output range of
 [0,1] is multiplied by scale
 flip translate coordinates on the main diagonal
 rotate default 0, rotate angle degrees clockwise around center
 center default NULL, if not NULL, the rotation center, numeric of length two
 unitsq logical, default FALSE, if TRUE and scale TRUE, impose unit square
 bounding box (currently only points)

Value

The methods return objects of the input class object with elided coordinates; the coordinate reference system is not set. Note that if the input coordinates or centroids are in the data slot data.frame of the input object, they should be removed before the use of these methods, otherwise they will betray the input positions.

Methods

obj = "SpatialPoints" elides object
obj = "SpatialPointsDataFrame" elides object
obj = "SpatialLines" elides object
obj = "SpatialLinesDataFrame" elides object
obj = "SpatialPolygons" elides object
obj = "SpatialPolygonsDataFrame" elides object

Note

Rotation code kindly contributed by Don MacQueen

Examples

data(meuse)
coordinates(meuse) <- c("x", "y")
proj4string(meuse) <- CRS("+init=epsg:28992")
data(meuse.riv)
river_polygon <- Polygons(list(Polygon(meuse.riv)), ID="meuse")
rivers <- SpatialPolygons(list(river_polygon))
proj4string(rivers) <- CRS("+init=epsg:28992")
riversonelide(rivers, reflect=c(TRUE, TRUE), scale=TRUE)
\begin{verbatim}
meuse1 <- elide(meuse, bb=bbox(rivers), reflect=c(TRUE, TRUE), scale=TRUE)
opar <- par(mfrow=c(1,2))
plot(rivers, axes=TRUE)
plot(meuse, add=TRUE)
plot(rivers1, axes=TRUE)
plot(meuse1, add=TRUE)
par(opar)
meuse1 <- elide(meuse, shift=c(10000, -10000))
bbox(meuse)
bbox(meuse1)
rivers1 <- elide(rivers, shift=c(10000, -10000))
bbox(rivers)
bbox(rivers1)
meuse1 <- elide(meuse, rotate=-30, center=apply(bbox(meuse), 1, mean))
bbox(meuse)
bbox(meuse1)
plot(meuse1, axes=TRUE)
\end{verbatim}

gcDestination \hspace{2cm} \textit{Find destination in geographical coordinates}

\section*{Description}

Find the destination in geographical coordinates at distance \texttt{dist} and for the given bearing from the starting point given by \texttt{lon} and \texttt{lat}.

\section*{Usage}

\begin{verbatim}
gcDestination(lon, lat, bearing, dist, dist.units = "km",
 model = NULL, Vincenty = FALSE)
\end{verbatim}

\section*{Arguments}

\begin{itemize}
 \item \texttt{lon} \hspace{2cm} longitude (Eastings) in decimal degrees (either scalar or vector)
 \item \texttt{lat} \hspace{2cm} latitude (Northings) in decimal degrees (either scalar or vector)
 \item \texttt{bearing} \hspace{2cm} bearing from 0 to 360 degrees (either scalar or vector)
 \item \texttt{dist} \hspace{2cm} distance travelled (scalar)
 \item \texttt{dist.units} \hspace{2cm} units of distance "km" (kilometers), "nm" (nautical miles), "mi" (statute miles)
 \item \texttt{model} \hspace{2cm} choice of ellipsoid model ("WGS84", "GRS80", "Airy", "International", "Clarke", "GRS67")
 \item \texttt{Vincenty} \hspace{2cm} logical flag, default FALSE
\end{itemize}

\section*{Details}

The bearing argument may be a vector when \texttt{lon} and \texttt{lat} are scalar, representing a single point.
Value

A matrix of decimal degree coordinates with Eastings in the first column and Northings in the second column.

Author(s)

Eric Archer and Roger Bivand

References

http://www.movable-type.co.uk/scripts/latlong.html#ellipsoid,
http://williams.best.vwh.net/avform.htm,
http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html,

Original reference http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf:

See Also

gAzimuth

Examples

data(state)
res <- gcDestination(state.center$x, state.center$y, 45, 250, "km")
plot(state.center$x, state.center$y, asp=1, pch=16)
arrows(state.center$x, state.center$y, res[,1], res[,2], length=0.05)
llist <- vector(mode="list", length=length(state.center$x))
for (i in seq(along=llist)) llist[[i]] <- gcDestination(state.center$x[i],
 state.center$y[i], seq(0, 360, 5), 250, "km")
plot(state.center$x, state.center$y, asp=1, pch=3)
nll <- lapply(llist, lines)

getinfo.shape

Get shapefile header information

Description

Get shapefile header information; the file should be given including its ".shp" extension, and the function will reconstruct the names of the database (dbf) file and the index (shx) file from these.

Usage

getinfo.shape(filen)
S3 method for class 'shapehead'
print(x, ...)

getKMLcoordinates

Arguments

- filename: name of file with *.shp extension
- x: a shapehead list as returned by getinfo.shape
- ...: other arguments passed to print

Details

The function calls code from shapelib to read shapefiles, a file format used by ESRI GIS software among others.

Value

The function returns a list of class shapehead.

Author(s)

Roger Bivand <roger.bivand@nhh.no>; shapelib by Frank Warmerdam

References

http://shapelib.maptools.org/

Examples

```r
res <- getinfo.shape(system.file("shapes/fylk-val.shp", package="maptools")[[1]])
res
str(res)
```

getKMLcoordinates

Get a list of coordinates out of a KML file

Description

This function parses a KML file to get the content of <coordinates> tags and returns a list of matrices representing the longitude-latitude or if ignoreAltitude is FALSE the longitude-latitude-altitude coordinates of a KML geometry.

Usage

```r
getKMLcoordinates(kmlfile, ignoreAltitude=FALSE)
```

Arguments

- kmlfile: connection object or a character string of the KML file
- ignoreAltitude: if set to TRUE the altitude values of a KML points will be ignored
Value

coords is a list of matrices representing the longitude-latitude or if ignoreAltitude is FALSE the longitude-latitude-altitude coordinates

Author(s)

Hans-J. Bibiko

See Also

kmlPolygon, kmlLine

Examples

data(wrld_simpl)
creates a KML file containing the polygons of South Africa (plus hole)
sw <- slot(wrld_simpl@wrld_simpl$NAME="South Africa", "polys")[[1]]
tf <- tempfile()
kmlPolygon(sw, kmlfile=tf, name="South Africa", col="#df0000aa", lwd=5,
border=4, kmlname="R Test",
kmldescription="This is only a R test.")
zz <- getKMLcoordinates(tf, ignoreAltitude=TRUE)
str(zz)

GE_SpatialGrid

Create SpatialGrid for PNG output to GE

Description

The function sets up metadata in the form of a SpatialGrid object for defining the size and placing of a PNG image overlay in Google Earth. The internal function Sobj_SpatialGrid can also be called to build a grid for arbitrary Spatial* objects.

Usage

GE_SpatialGrid(obj, asp = NA, maxPixels = 600)
Sobj_SpatialGrid(obj, asp = 1, maxDim = 100, n = NULL)

Arguments

<table>
<thead>
<tr>
<th>Arg</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a Spatial* object</td>
<td></td>
</tr>
<tr>
<td>asp</td>
<td>if NA, will be set to the latitude corrected value</td>
<td></td>
</tr>
<tr>
<td>maxPixels</td>
<td>the maximum dimension of the output PNG</td>
<td></td>
</tr>
<tr>
<td>maxDim</td>
<td>the maximum dimension of the output grid; ignored if n not NULL</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>if not NULL, the minimum number of cells in the returned grid</td>
<td></td>
</tr>
</tbody>
</table>
Details

The function is used together with kmloverlay to wrap around the opening of a PNG graphics device, plotting code, and the closing of the device. The computed values take account of the adjustment of the actual data bounding box to an integer number of rows and columns in the image file.

The approach may be used as an alternative to writing PNG files from SpatialGrid and SpatialPixel objects in `rgdal` using `writeGDAL`, and to writing KML files using `writeOGR` for vector data objects. The output PNG files are likely to be very much smaller than large vector data KML files, and hinder the retrieval of exact positional information.

Note that the geometries should be in geographical coordinates with datum WGS84 for export to KML.

Value

returns an S3 object of class `GE_SG` with components:

- `height`: Integer raster height for png call
- `width`: Integer raster width for png call
- `SG`: a SpatialGrid object with the grid topology of the output PNG
- `asp`: the aspect value used
- `xlim`: xlim taken from SG
- `ylim`: ylim taken from SG

Author(s)

Duncan Golicher, David Forrest and Roger Bivand

See Also

- `kmloverlay`

Examples

```r
opt_exask <- options(example.ask=FALSE)
qk <- SpatialPointsDataFrame(quakes[, c(2:7)], quakes)
summary(Sobj_SpatialGrid(qk)$SG)
t2 <- Sobj_SpatialGrid(qk, n=10000)$SG
summary(t2)
prod(slot(slot(t2, "grid"), "cells.dim"))
proj4string(qk) <- CRS("+proj=longlat")
tf <- tempfile()
SGqk <- GE_SpatialGrid(qk)
png(file=paste(tf, ".png", sep=""), width=SGqk$width, height=SGqk$height,
   bg="transparent")
par(mar=c(0,0,0,0), xaxs="i", yaxs="i")
plot(qk, xlim=SGqk$xlim, ylim=SGqk$ylim, setParUsrBB=TRUE)
dev.off()
kmloverlay(SGqk, paste(tf, ".kml", sep=""), paste(tf, ".png", sep=""))
```
gpcholes

Hisaji Ono’s lake/hole problem

Description

How to plot polygons with holes - holes are encoded by coordinates going anticlockwise, and overplotting is avoided by re-ordering the order in which polygons are plotted.

This example is retained for historical interest only, other solutions are present in the sp package.

Usage

data(gpcholes)

Details

"Date: Tue, 11 May 2004 12:54:20 +0900 From: Hisaji ONO To: r-help

I’ve tried to create a polygon with one hole by gpclib using following example script.

holepoly <- read.polyfile(system.file("poly-ex/hole-poly.txt", package="gpclib"), nohole = FALSE)
area.poly(holepoly) plot(holepoly,poly.args=list(col="red",border="blue"))

And I noticed plot function couldn’t draw polygons with holes correctly.

Does anyone know how to solve this situation?"

(h1pl has reversed the y component of polygon 1, to make its ring direction clockwise, h2pl reverses the order of the two polygons in holepoly1@pts)

Source

Data file included in "gpclib" package.

Examples

data(gpcholes)
opar <- par(mfrow=c(1,2))
plot(SpatialPolygons(list(h2pl)), col="red", pbg="white", border="blue")
plot(SpatialPolygons(list(h1pl)), col="red", pbg="white", border="blue")
par(opar)
gzAzimuth

Find azimuth for geographical coordinates

Description

The function finds azimuth values for geographical coordinates given as decimal degrees from the from coordinates to the to coordinate. In function trackAzimuth, the azimuth values are found between successive rows of the input coordinate matrix.

Usage

```
gzAzimuth(from, to, type = "snyder_sphere")
trackAzimuth(track, type="snyder_sphere")
```

Arguments

- **from**: a two column matrix of geographical coordinates given as decimal degrees (longitude first)
- **track**: a two column matrix of geographical coordinates given as decimal degrees (longitude first)
- **to**: a one row, two column matrix or two element vector of geographical coordinates given as decimal degrees (longitude first)
- **type**: default is "snyder_sphere", otherwise "abdali"; the results should be identical with slightly less trigonometry in "abdali"

Details

The azimuth is calculated on the sphere, using the formulae given by Snyder (1987, p. 30) and Abdali (1997, p. 17). The examples use data taken from Abdali (p. 17–18). There is a very interesting discussion of the centrality of azimuth-finding in the development of mathematics and mathematical geography in Abdali’s paper. Among others, al-Khwarizmi was an important contributor. As Abdali puts it, "This is a veritable who’s who of medieval science" (p. 3).

Value

values in decimal degrees - zero is North - of the azimuth from the from coordinates to the to coordinate.

Author(s)

Roger Bivand, with contributions by Sebastian Luque

References

kmlline

Examples

```r
name <- c("Mecca", "Anchorage", "Washington")
long <- c(39.823333, -149.883333, -77.0166667)
lat <- c(21.423333, 61.2166667, 38.9)
x <- cbind(long, lat)
row.names(x) <- name
crib <- c(-9.098363, 56.57596)
r1 <- gzAzimuth(x[2:3,], x[1,])
r1
all.equal(r1, crib)
r2 <- gzAzimuth(x[2:3,], x[1,], type="abdali")
r2
all.equal(r2, crib)
trackAzimuth(x)
```

kmlline

Create and write a KML file on the basis of a given Lines object

Description

The function is used to create and write a KML file on the basis of a given Lines object (a list of Line objects) for the usage in Google Earth resp. Google Maps.

Usage

```r
kmlline(obj=NULL, kmlfile=NULL,
       name="R Line", description="", col=NULL, visibility=1, lwd=1,
       kmlname="", kmldescription="")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a Lines or SpatialLinesDataFrame object</td>
</tr>
<tr>
<td>kmlfile</td>
<td>if not NULL the name as character string of the kml file to be written</td>
</tr>
<tr>
<td>name</td>
<td>the name of the KML line</td>
</tr>
<tr>
<td>description</td>
<td>the description of the KML line (HTML tags allowed)</td>
</tr>
<tr>
<td>col</td>
<td>the stroke color (see also Color Specification) of the KML line</td>
</tr>
<tr>
<td>visibility</td>
<td>if set to 1 or TRUE specifies that the KML line should be visible after loading</td>
</tr>
<tr>
<td>lwd</td>
<td>the stroke width for the KML line</td>
</tr>
<tr>
<td>kmlname</td>
<td>the name of the KML layer</td>
</tr>
<tr>
<td>kmldescription</td>
<td>the description of the KML layer (HTML tags allowed)</td>
</tr>
</tbody>
</table>
Details

The function is used to convert a given Lines object (a list of Line objects) or the first Lines object listed in a passed SpatialLinesDataFrame object into KML line(s). If kmlfile is not NULL the result will be written into that file. If kmlfile is NULL the generated KML lines will be returned (see also value).

For a passed Lines object the function generates a <Style> tag whereby its id attribute is set to the passed object’s ID.

Note that the geometries should be in geographical coordinates with datum WGS84.

The resulting KML line will be embedded in <Placemark><MultiGeometry><LineString>.

Value

x is a list with the elements style and content containing the generated lines of the KML file as character vectors if kmlfile is NULL.

y is a list with the elements header and footer representing the KML file’ header resp. footer if obj is NULL.

Color Specification

The following color specifications are allowed: ‘red’, 2, or as hex code '#RRGGBB' resp. '#RRGGBBAAB' for passing the alpha value.

Author(s)

Hans-J. Bibiko

See Also

kmlOverlay, kmlPolygon, Line

Examples

```r
xx <- readShapeSpatial(system.file("shapes/fylk-val-ll.shp", package="maptools")[[1]], proj4string=CRS("+proj=longlat"))
out <- sapply(slot(xx, "lines"), function(x) { kmlline(x, 
  name=slot(x, "ID"), col="blue", lwd=1.5, 
  description=paste("river: ", slot(x, "ID"))) })
tf <- tempfile()
kmlFile <- file(tf, "w")
tf
cat(kmlline(kmlname="R Test", kmldescription="<i>Hello</i>", header, 
  file=kmlFile, sep="\n")
cat(unlist(out[["style"]]), file=kmlFile, sep="\n")
cat(unlist(out[["content"]]), file=kmlFile, sep="\n")
cat(kmlline())$footer, file=kmlFile, sep="\n")
close(kmlFile)
```
kmlLines

Create and write a KML file on the basis of a given Lines object

Description

The function is used to create and write a KML file on the basis of a given Lines object (a list of Line objects) for the usage in Google Earth and Google Maps.

Usage

kmlLines(obj=NULL, kmlfile=NULL,
 name="R Lines", description="", col=NULL, visibility=1, lwd=1,
 kmlname="", kmldescription="")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a Lines or SpatialLinesDataFrame object</td>
</tr>
<tr>
<td>kmlfile</td>
<td>if not NULL the name as character string of the kml file to be written</td>
</tr>
<tr>
<td>name</td>
<td>the name of the KML line</td>
</tr>
<tr>
<td>description</td>
<td>the description of the KML line (HTML tags allowed)</td>
</tr>
<tr>
<td>col</td>
<td>the stroke color (see also Color Specification) of the KML line</td>
</tr>
<tr>
<td>visibility</td>
<td>if set to 1 or TRUE specifies that the KML line should be visible after loading</td>
</tr>
<tr>
<td>lwd</td>
<td>the stroke width for the KML line</td>
</tr>
<tr>
<td>kmlname</td>
<td>the name of the KML layer</td>
</tr>
<tr>
<td>kmldescription</td>
<td>the description of the KML layer (HTML tags allowed)</td>
</tr>
</tbody>
</table>

Details

The function is used to convert a given Lines object (a list of Line objects) or the first Lines object listed in a passed SpatialLinesDataFrame object into KML line(s). If kmlfile is not NULL the result will be written into that file. If kmlfile is NULL the generated KML lines will be returned (see also value). Function no longer uses append greatly improving performance on large objects or lists.

For a passed Lines object the function generates a <Style> tag whereby its id attribute is set to the passed object's ID.

Note that the geometries should be in geographical coordinates with datum WGS84.

The resulting KML line will be embedded in <Placemark><MultiGeometry><LineString>.

Value

x is a list with the elements style and content containing the generated lines of the KML file as character vectors if kmlfile is NULL.

y is a list with the elements header and footer representing the KML file header and footer if obj is NULL.
Color Specification

The following color specifications are allowed: 'red', 2, or as hex code '#RRGGBB' resp. '#RRGGBBAA' for passing the alpha value.

Author(s)

Hans-J. Bibiko, Jon Callahan, Steven Brey

See Also

kmlOverlay, kmlPolygon, Line

Examples

```r
# Maptools library required
library(maptools)
# load line object
rivers <- readShapeSpatial(system.file("shapes/fylk-val-ll.shp",
    package="maptools")[[1], proj4string=CRS("+proj=longlat"))
# create kml file
kmllines(rivers, kmlfile = "rivers.kml", name = "R Lines",
    description = "Hello!", col = "blue", visibility = 1, lwd = 1,
    kmlname = "", kmldescription = "")
```

kmlOverlay

Create and write KML file for PNG image overlay

Description

The function is used to create and write a KML file for a PNG image overlay for Google Earth.

Usage

```r
kmlOverlay(obj, kmlfile = NULL, imagefile = NULL, name = "R image")
```

Arguments

- **obj**: a GE_SG object from GE_SpatialGrid
- **kmlfile**: if not NULL the name of the kml file to be written
- **imagefile**: the name of the PNG file containing the image - this should be either relative (same directory as kml file) or absolute (fully qualified)
- **name**: the name used to describe the image overlay in GE
Details

The function is used together with `GE_SpatialGrid` to wrap around the opening of a PNG graphics device, plotting code, and the closing of the device. The computed values take account of the adjustment of the actual data bounding box to an integer number of rows and columns in the image file.

The approach may be used as an alternative to writing PNG files from SpatialGrid and SpatialPixel objects in `rgdal` using `writeGDAL`, and to writing KML files using `writeOGR` for vector data objects. The output PNG files are likely to be very much smaller than large vector data KML files, and hinder the retrieval of exact positional information.

Note that the geometries should be in geographical coordinates with datum WGS84.

Value

x is a character vector containing the generated lines of the kml file

Author(s)

Duncan Golicher, David Forrest and Roger Bivand

See Also

`GE_SpatialGrid`

Examples

```r
opt_exask <- options(example.ask=FALSE)
qk <- SpatialPointsDataFrame(quakes[, c(2:1)], quakes)
proj4string(qk) <- CRS("+proj=longlat")
tf <- tempfile()
SGkq <- GE_SpatialGrid(qk)
png(file=paste(tf, ".png", sep=""), width=SGkq$width, height=SGkq$height,
    bg="transparent")
par(mar=c(0,0,0,0), xaxs="i", yaxs="i")
plot(qk, xlim=SGkq$xlim, ylim=SGkq$ylim, setParUsrBB=TRUE)
dev.off()
kmlOverlay(SGkq, paste(tf, ".kml", sep=""), paste(tf, ".png", sep=""))
# Not run:
library(rgdal)
qk@ <- quakes
qk@$long <- ifelse(qk@$long <= 180, qk@$long, qk@$long-360)
qk@a <- SpatialPointsDataFrame(qk@[, c(2:1)], qk@)
proj4string(qk@a) <- CRS("+proj=longlat")
writeOGR(qk@a, paste(tf, ".v.kml", sep=""), "Quakes", "KML")
system(paste("googleearth ", tf, ".kml", sep=""))

## End(Not run)
options(example.ask=opt_exask)
```
kmlPoints

Create and write a KML file on the basis of a given Points object

Description

The function is used to create and write a KML file on the basis of a given SpatialPointsDataFrame object for the usage in Google Earth resp. Google Maps.

Usage

kmlPoints(obj=NULL, kmlfile=NULL, kmlname="", kmldescription="", name=NULL, description="", icon="http://google.com/mapfiles/kml/paddle/wht-diamond.png")

Arguments

obj a SpatialPointsDataFrame object
kmlfile if not NULL the name as character string of the kml file to be written
kmlname the name of the KML layer
kmldescription the description of the KML layer (HTML tags allowed)
name a character vector to be used as names for each KML Placemark
description a character vector to be used as the description for each KML Placemark (HTML tags allowed)
icon a character vector of icon URLs to be used in the style associated with each KML Placemark

Details

The function is used to convert a given SpatialPointsDataFrame object into a series of KML Placemarks, each with a single Point. If kmlfile is not NULL the result will be written into that file. If kmlfile is NULL the generated KML lines will be returned (see also value).

If name=NULL, the <name> tag for each Placemark will be 'site #'. If a single value is used for name or description, that value will be replicated for each Placemark. If a single value is used for icon, only a single style will be created and that style will be referenced by each Placemark.

Note that the geometries should be in geographical coordinates with datum WGS84.

Value

x is a list with the elements style and content containing the generated lines of the KML file as character vectors if kmlfile is NULL.
y is a list with the elements header and footer representing the KML file’ header resp. footer if obj is NULL.
KML icons

Author(s)

Jonathan Callahan

See Also

kmlLine, kmlOverlay, kmlPolygon, Line

Examples

data(SplashDams)
num <- length(SplashDams)
td <- tempdir()
kmlfile <- paste(td, "OregonSplashDams.kml", sep="/")
kmlname <- "Oregon Splash Dams"
kmldescription <- paste("Data for Splash Dams in western Oregon.",
"See http://www.fs.fed.us/pnw/lwm/aem/people/burnett.html#projects_activities",
"for more information.")
icon <- "http://google.com/mapfiles/kml/paddle/wht-diamond.png"
name <- paste("Dam on", SplashDams$streamName)
description <- paste("owner:", SplashDams$owner, "dates:", SplashDams$datesUsed)
kmlpoints(SplashDams, kmlfile=kmlfile, name=name, description=description,
icon=icon, kmlname=kmlname, kmldescription=kmldescription)

kmlPolygon

Create and write a KML file on the basis of a given Polygons object

Description

The function is used to create and write a KML file on the basis of a given Polygons object (a list of Polygon objects) for the usage in Google Earth resp. Google Maps.

Usage

```r
kmlPolygon(obj=NULL, kmlfile=NULL,
    name="R Polygon", description="", col=NULL, visibility=1, lwd=1, border=1,
    kmlname="", kmldescription="")
```
Arguments

- **obj**: a Polygons or SpatialPolygonsDataFrame object
- **kmlfile**: if not NULL the name as character string of the kml file to be written
- **name**: the name of the KML polygon
- **description**: the description of the KML polygon (HTML tags allowed)
- **col**: the fill color (see also Color Specification) of the KML polygon
- **visibility**: if set to 1 or TRUE specifies that the KML polygon should be visible after loading
- **lwd**: the stroke width for the KML polygon
- **border**: the stroke color (see also Color Specification) for the KML polygon
- **kmlname**: the name of the KML layer
- **kmldescription**: the description of the KML layer (HTML tags allowed)

Details

The function is used to convert a given Polygons object (a list of Polygon objects) or the first Polygons object listed in a passed SpatialPolygonsDataFrame object into KML polygon. If kmlfile is not NULL the result will be written into that file. If kmlfile is NULL the generated KML lines will be returned (see also value).

The conversion can also handle polygons which are marked as holes inside of the Polygons object if these holes are listed right after that polygon in which these holes appear. That implies that a given plot order set in the Polygons object will not be considered.

For a passed Polygons object the function generates a <Style> tag whereby its id attribute is set to the passed object’s ID.

Note that the geometries should be in geographical coordinates with datum WGS84.

The resulting KML polygon will be embedded in `<Placemark><MultiGeometry><Polygon>`.

Value

- **x**: is a list with the elements style and content containing the generated lines of the KML file as character vectors if kmlfile is NULL.
- **y**: is a list with the elements header and footer representing the KML file' header resp. footer if obj is NULL (see second example).

Color Specification

The following color specifications are allowed: 'red', 2, or as hex code '#RRGGBB' resp. '#RRGGBBAA' for passing the alpha value.

Author(s)

Hans-J. Bibiko

See Also

- `kmlOverlay`, `kmlLine`, `SpatialPolygons`
Examples

```r
data(wrld_simpl)
## creates a KML file containing the polygons of South Africa (plus hole)
sw <- slot(wrld_simpl[wrld_simpl$NAME=="South Africa",], "polygons")[[1]]
tf <- tempfile()
kmlPolygon(sw, kmlfile=tf, name="South Africa", col="#d00000", lwd=5, 
border=4, kmlname="R Test",
kmldescription="This is a test")
tf
```

```r
## creates a KML file containing the polygons of South Africa, Switzerland, and Canada
sw <- wrld_simpl[wrld_simpl$NAME %in% c("South Africa", "Switzerland", "Canada")]
out <- sapply(slot(sw, "polygons"), function(x) { kmlPolygon(x, 
name=as(sw, "data.frame")[[slot(x, "ID")]], "NAME"),
col="red", lwd=1.5, border='black',
description=paste("ISO3: ", slot(x, "ID"))) })
tf <- tempfile()
kmlFile <- file(tf, "w")
tf
cat(kmlPolygon(kmlname="R Test", kmldescription="<i>Hello</i>"),
file=kmlFile, sep="\n")
cat(unlist(out["style"],)), file=kmlFile, sep="\n")
cat(unlist(out["content"],)), file=kmlFile, sep="\n")
cat(kmlPolygon()$footer, file=kmlFile, sep="\n")
close(kmlFile)
```

kmlPolygons

Create and write a KML file on the basis of a given Polygons object or list of Polygons or SpatialPolygonsDataFrame

Description

The function is used to create and write a KML file on the basis of a given Polygons object (a list of Polygon objects of SpatialPolygonsDataFrame class) for the usage in Google Earth and Google Maps.

Usage

```r
kmlPolygons(obj=NULL, kmlfile=NULL,
        name="KML Polygons", description="", col=NULL, visibility=1, lwd=1, 
        border="white", kmlname="", kmldescription="")
```

Arguments

- **obj**
 - a Polygons or SpatialPolygonsDataFrame object or list of objects

- **kmlfile**
 - if not NULL the name as character string of the kml file to be written to working directory as "NAME.kml"

- **name**
 - the name of the KML polygon in Google Earth
description the description of the KML polygon displayed in Google Earth or Maps (HTML tags allowed)
col the fill color (see also Color Specification) of the KML polygon. If passing a list of Polygons or SpatialPolygonsDataFrame and length(col) is less than length(object) the first color in col will be applied to all objects in the list
visibility if set to 1 or TRUE specifies that the KML polygon should be visible after loading
lwd the stroke (polygon’s border line) width for the KML polygon
border the stroke color (see also Color Specification) for the KML polygon
kmlname the name of the KML layer
kmldescription the description of the KML layer (HTML tags allowed)

Details

The function is used to convert a given Polylines object (a list of Polygon objects) or the Polylines object listed in a passed SpatialPolygonsDataFrame object into KML polygon. If kmlfile is not NULL the result will be written into that file. If kmlfile is NULL the generated KML lines will be returned (see also value).

The conversion can also handle polygons which are marked as holes inside of the Polylines object if these holes are listed right after that polygon in which these holes appear. That implies that a given plot order set in the Polylines object will not be considered.

For a passed Polygons object the function generates a <Style> tag whereby its id attribute is set to the passed object’s ID.

Note that the geometries should be in geographical coordinates with datum WGS84.

The resulting KML polygon will be embedded in <Placemark><MultiGeometry><Polygon>.

Value

x is a list with the elements style and content containing the generated lines of the KML file as character vectors if kmlfile is NULL.

y is a list with the elements header and footer representing the KML file’s header resp. footer if obj is NULL (see second example).

Color Specification

The following color specifications are allowed: 'red', 2, or as hex code '#RRGGBB' resp. '#RRGGBBBAA' for passing the alpha value.

Author(s)

Hans-J. Bibiko, Jon Callihan, Steven Brey

See Also

kmlPolygon, kmlLines, SpatialPolygons, kmlPoints
Examples

```r
data(wrld_simpl)
## creates a KML file containing the polygons of a political world map
kmlPolygons(wrld_simpl, kmlfile = "worldPolitical.kml", name = "KML Polygons",
            description = "the world", col = "red",
            visibility = 1, lwd = 1, border = "white", kmlname = "R Test",
            kmldescription = "This is &lt;b&gt;only&lt;/b&gt; a &lt;a href='http://www.r-project.org'>R&lt;/a&gt; test.")

data(wrld_simpl)
## create a KML file containing the polygons of Brazil, Uganda, and Canada
regions <- c("Brazil", "Canada", "Uganda")
wrld_simpl_subset <- wrld_simpl[, wrld_simpl$NAME %in% regions,]
kmlPolygons(wrld_simpl_subset, kmlfile = "worldPoliticalSubset.kml",
            name = "KML Polygons subset", description = "three countries", col = "blue",
            visibility = 1, lwd = 1, border = "white", kmlname = "R Test 2",
            kmldescription = "This is &lt;b&gt;only&lt;/b&gt; a &lt;a href='http://www.r-project.org'>R&lt;/a&gt; test.")
## combine to make a list of polygon objects to plot
pollist <- c(regions, wrld_simpl)
kmlPolygons(wrld_simpl_subset, kmlfile = "worldPoliticalAndSubset.kml",
            name = "KML Polygons subset", description = "three countries highlighted in world",
            col = sample(colours(), length(pollist)), visibility = 1, lwd = 1, border = "white",
            kmlname = "R Test 2",
            kmldescription = "This is &lt;b&gt;only&lt;/b&gt; a &lt;a href='http://www.r-project.org'>R&lt;/a&gt; test.")
```

leglabs

Make legend labels

leglabs makes character strings from the same break points. The `plot.polylist()` function may be used as a generic S3 method.

Usage

```r
leglabs(vec, under="under", over="over", between="-")
```

Arguments

- `vec` vector of break values
- `under` character value for under
- `over` character value for over
- `between` character value for between

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>
See Also

findinterval

Examples

mappolys <- readShapeSpatial(system.file("shapes/columbus.shp", package="maptools")[[1]], ID="NEIGNO")
brks <- round(quantile(mappolys$CRIME, probs=seq(0,1,0.2)), digits=2)
colours <- c("salmon1", "salmon2", "red3", "brown", "black")
plot(mappolys, col=colours[findinterval(mappolys$CRIME, brks, all.inside=TRUE)])
legend(x=c(5.8, 7.1), y=c(13, 14.5), legend=leglabs(brks),
 fill=colours, bty="n")
invisible(title(main=paste("Columbus OH: residential burglaries and vehicle",
 "thefts per thousand households, 1980", sep="\n")))

lineLabel

Line label placement with spplot and lattice.

Description

The lineLabel function produces and draws text grobs following the paths defined by a list of Line objects. The sp.lineLabel methods use this function to work easily with spplot.

Usage

lineLabel(line, label,
 spar=.6, position = c('above', 'below'),
 textloc = 'constantSlope',
 col = add.text$col,
 alpha = add.text$alpha,
 cex = add.text$cex,
 lineheight = add.text$lineheight,
 font = add.text$font,
 fontfamily = add.text$fontfamily,
 fontface = add.text$fontface,
 lty = add.line$lty,
 lwd = add.line$lwd,
 col.line = add.line$col,
 identifier = 'lineLabel',
 ...)

sp.lineLabel(object, labels, byid=TRUE,...)

label(object, text, ...)
Arguments

- **line**: a list of Lines.
- **object**: A Lines or SpatialLines object.
- **text**: a string or expression to be printed following the path of line. The names of labels should match the values of the ID slot of the lines to label. If labels is missing, the ID slot is used instead. The label method is a wrapper function to extract the ID slots and create a suitable character object with the correct names values.
- **byid**: If TRUE (default) only the longest line of each unique ID value will be labelled.
- **textloc**: a character or a numeric. It may be 'constantSlope', 'minSlope' or 'maxDepth', or the numeric index of the location. If it is a numeric, its length must coincide with the number of lines.
- **spar**: smoothing parameter. With values near zero, the label will closely follow the line. Default value is .6. See smooth.spline for details.
- **position**: character string ('above' or 'below') to define where the text must be placed.
- **col, alpha, cex, lineheight, font, family, face**: graphical arguments for the text. See gpar for details.
- **lty, lwd, col.line**: graphical parameters for the line. See gpar for details.
- **identifier**: A character string to identify the grob to be created.
- **other arguments**: other arguments

Details

Part of the label location code is adapted from `panel.levelplot`, `smooth.spline` is used to resample the segment of the line where the label is placed.

Author(s)

Oscar Perpiñán Lamigueiro.

See Also

- `spplot` `sp.pointLabel` `pointLabel` `panel.levelplot` `smooth.spline`

Examples

```r
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
gridded(meuse.grid) = TRUE

data(meuse)
coordinates(meuse) = ~x+y
data(meuse.riv)
meuse.sl <- SpatialLines(list(Lines(list(Line(meuse.riv)), "1")))
```
library(RColorBrewer)
myCols <- adjustcolor(colorRampPalette(brewer_pal(n=9, 'Reds'))(100), .85)
labs <- label(meuse.sl, 'Meuse River')

Maximum depth
sl1 <- list('sp.lineLabel', meuse.sl, label=labs,
 position='below', textloc='maxDepth',
 spar=.2,
 col='darkblue', cex=1,
 fontfamily='Palatino',
 fontface=2)

spplot(meuse.grid['dist'],
 col.regions=myCols,
 sp.layout = sl1)

Constant slope
sl2 <- modifyList(sl1, list(textloc = 'constantSlope')) ## Default

spplot(meuse.grid['dist'],
 col.regions=myCols,
 sp.layout = sl2)

Location defined by its numeric index
sl3 <- modifyList(sl1, list(textloc = 140, position='above'))

spplot(meuse.grid['dist'],
 col.regions=myCols,
 sp.layout = sl3)

map2SpatialPolygons Convert map objects to sp classes

Description

These functions may be used to convert map objects returned by the map function in the maps package to suitable objects defined in the sp package. In the examples below, arguments are shown for retrieving first polygons by name, then lines by window.

Usage

map2SpatialPolygons(map, IDs, proj4string = CRS(as.character(NA)), checkHoles=FALSE)
map2SpatialLines(map, IDs=NULL, proj4string = CRS(as.character(NA)))
pruneMap(map, xlim=NULL, ylim=NULL)
Arguments

map a map object defined in the maps package and returned by the map function
IDs Unique character ID values for each output Polygons object; the input IDs can be an integer or character vector with duplicates, where the duplicates will be combined as a single output Polygons object
proj4string Object of class "CRS"; holding a valid proj4 string
checkHoles default=FALSE, if TRUE call checkPolygonsHoles internally to check hole assignment, (by default no polygon objects are holes)
xlim,ylim limits for pruning a map object - should only be used for lines, because polygons will not be closed

Value

map2SpatialPolygons returns a SpatialPolygons object and map2SpatialLines returns a SpatialLines object (objects defined in the sp package); pruneMap returns a modified map object defined in the maps package

Note

As the examples show, retrieval by name should be checked to see whether a window is not also needed: the "norway" polygons include "Norway:Bouvet Island", which is in the South Atlantic. Here, the IDs argument is set uniformly to "Norway" for all the component polygons, so that the output object contains a single Polygons object with multiple component Polygon objects. When retrieving by window, pruning may be needed on lines which are included because they begin within the window; interior=FALSE is used to remove country boundaries in this case.

Author(s)

Roger Bivand

See Also

map

Examples

```r
ifHrequireHmapsII {
  nor_coast_poly <- mapHBworldBL BnorwayBL fill=trueL col=TRANSPARENTBL,
plot=falseL
  rangeHnor_coast_poly$xL, na.rm=trueL
  rangeHnor_coast_poly$yL, na.rm=trueL
  nor_coast_poly <- mapHBworldBL BnorwayBL fill=trueL col=TRANSPARENTBL,
plot=falseL, ylim=cH58.72I
  nor_coast_poly$names
  IDs <- sapplyHstrsplitHnor_coast_poly$namesL BZBIL functionHxI x[1]L
  nor_coast_poly_sp <- map2SpatialPolygonsHnor_coast_polyL IDs=IDs,
proj4string=CRSB"+proj=longlat +datum=WGS84"B)
  sapplyHslotHnor_coast_poly_spL BpolygonsBIL functionHxI lengthHslotHxL BpolygonsBII
```
nearestPointOnLine

Get the nearest point on a line to a given point

Description
This function calculates the coordinates of the nearest point on a line to a given point. This function does not work with geographic coordinates.

Usage
nearestPointOnLine(coordsLine, coordsPoint)

Arguments
- coordsLine: Matrix with coordinates of line vertices. Each row represents a vertex.
- coordsPoint: A vector representing the X and Y coordinates of the point.

Value
Vector with the X and Y coordinates of the nearest point on a line to the given point.

Author(s)
German Carrillo

See Also
- nearestPointOnSegment, snapPointsToLines

Examples
coordsLine = cbind(c(1,2,3),c(3,2,2))
coordsPoint = c(1.2,1.5)
nearestPointOnLine(coordsLine, coordsPoint)
nearestPointOnSegment

Get the nearest point on a segment to a given point

Description

This function calculates the coordinates of and the distance to the nearest point on a segment to a given point. This function does not work with geographic coordinates.

Usage

```r
nearestPointOnSegment(s, p)
```

Arguments

- `s` A matrix representing the coordinates of the segment. The matrix has 2x2 dimension where each row represents one of the end points.
- `p` A vector representing the X and Y coordinates of the point.

Value

A vector with three numeric values representing X and Y coordinates of the nearest point on a segment to a given point as well as the distance between both points.

Author(s)

German Carrillo

References

The function was ported to R based on this code: http://pastebin.com/n9rUuGRh

See Also

`nearestPointOnLine`, `snapPointsToLines`

Examples

```r
segment = cbind(c(1,2),c(1,5))
point = c(1.2,1.5)
nearestPointOnSegment(segment, point)
```
Description

When recentering a world map, say to change an "Atlantic" view with longitude range -180 to 180, to a "Pacific" view, with longitude range 0 to 360, polygons crossed by the new offset, here 0/360, need to be clipped into left and right sub.polygons to avoid horizontal scratches across the map. The nowrapSpatialPolygons function performs this operation using polygon intersection, and nowrapReceneter recenters the output SpatialPolygons object.

Usage

nowrapReceneter(obj, offset = 0, eps = rep(Machine$double.eps^(1/2), 2), avoidGEOS = FALSE)

nowrapSpatialPolygons(obj, offset = 0, eps=rep(Machine$double.eps^(1/2), 2), avoidGEOS = FALSE)

Arguments

obj A SpatialPolygons object
offset offset from the Greenwich meridian
eps vector of two (left and right) fuzz factors to retract the ring from the offset (square root to accommodate rgeos precision rules)
avoidGEOS use gpclib code even if rgeos is available

Value

A SpatialPolygons object

Author(s)

Roger Bivand

See Also

recenter-methods, nowrapSpatialLines

Examples

Not run:
library(maps)
world <- map("world", fill=TRUE, col="transparent", plot=FALSE)
worldSpP <- map2SpatialPolygons(world, world$names, CRS("+proj=longlat"))
worldSpP <- worldSpP[-grep("Antarctica", row.names(worldSpP))]
incomplete polygons
worldSpP <- worldSpP[-grep("Ghana", row.names(worldSpP))]
pal2SpatialPolygons

Making SpatialPolygons objects from RArcInfo input

Description
This function is used in making SpatialPolygons objects from RArcInfo input.

Usage

```r
pal2SpatialPolygons(arc, pal, IDs, dropPoly1 = TRUE, 
proj4string = CRS(as.character(NA)))
```

Arguments

- **IDs**
 Unique character ID values for each output Polygons object; the input IDs can be an integer or character vector with duplicates, where the duplicates will be combined as a single output Polygons object

- **proj4string**
 Object of class "CRS"; holding a valid proj4 string

- **arc**
 Object returned by `get.arcdata`

- **pal**
 Object returned by `get.paldata`

- **dropPoly1**
 Should the first polygon in the AVC or e00 data be dropped; the first polygon is typically the compound boundary of the whole dataset, and can be detected by looking at the relative lengths of the list components in the second component of `pal`, which are the numbers of arcs making up the boundary of each polygon
Value

The functions return a SpatialPolygons object

Author(s)

Roger Bivand

Examples

```r
nc1 <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]], ID="FIPS")
plot(nc1)
text(coordinates(nc1), labels=row.names(nc1), cex=0.6)
if(require(maps)){
  ncmap <- map("county", "north carolina", fill=TRUE, col="transparent",
              plot=FALSE)
  IDs <- sapply(strsplit(ncmap$names, "[[:blank:]]"), function(x) x[2])
nc2 <- map2SpatialPolygons(ncmap, IDs)
plot(nc2)
text(coordinates(nc2), labels=row.names(nc2), cex=0.6)
}
if(require(RArcInfo)){
  td <- tempdir()
tmpcover <- paste(td, "nc", sep="/")
if (!file.exists(tmpcover)) e00toavc(system.file("share/co37_d90.e00",
       package="maptools")[[1]], tmpcover)
arcc <- get.arcdata(td, "nc")
palc <- get.paldata(td, "nc")
patc <- get.tabledata(paste(td, "info", sep="/"), "NC.PAT")
sapply(palc[[2]], function(x) length(x[[1]]))
IDs <- paste(patc$ST[-1], patc$CO[-1], sep="")
nc3 <- pal2SpatialPolygons(arcc, palc, IDs=IDs)
plot(nc3)
text(coordinates(nc3), labels=row.names(nc3), cex=0.6)
}
```

panel.pointLabel

Label placement with `spplot` and `lattice`.

Description

Use optimization routines to find good locations for point labels without overlaps.

Usage

```r
panel.pointLabel(x, y = NULL,
  labels = seq(along = x),
  method = c("SANN", "GA"),
  allowSmallOverlap = FALSE,
  col = add.text$col,
```
panel.pointLabel

alpha = add.text$alpha,
cex = add.text$cex,
lineheight = add.text$lineheight,
font = add.text$font,
fontfamily = add.text$fontfamily,
fontface = add.text$fontface,
fill = 'transparent',
...

sp.pointLabel(object, labels, ...)

Arguments

object A SpatialPoints object.
x, y coordinates for the point labels. See xy.coords for details.
labels a character vector or expression.
method the optimization method, either SANN for simulated annealing (the default) or
 GA for a genetic algorithm.
allowSmallOverlap logical; if TRUE, labels are allowed a small overlap. The overlap allowed is 2%
 of the diagonal distance of the plot area.
col, alpha, cex, lineheight, font, fontfamily, fontface, fill
 Graphical arguments. See gpar for details
 Additional arguments (currently not processed).

Author(s)

Tom Short wrote pointLabel for base graphics. Oscar Perpiñán Lamigueiro modified this function
for lattice and spplot.

See Also

spplot
pointLabel

Examples

n <- 15
x <- rnorm(n) * 10
y <- rnorm(n) * 10
labels <- as.character(round(x, 5))

myTheme <- list(add.text=list(
 cex=0.7,
 col='midnightblue',
 fontface=2,
 fontfamily='mono'))
library(lattice)
xyplot(y~x,
 labels=labels,
 par.settings=myTheme,
 panel=function(x, y, labels, ...){
 panel.xyplot(x, y, ...)
 panel.pointLabel(x, y, labels=labels, ...)
 })

data(meuse.grid)
coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
gridded(meuse.grid) = TRUE

library(RColorBrewer)
myCols <- adjustcolor(colorRampPalette(brewer_pal(n=9, 'Reds'))(100), .85)

pts <- spsample(meuse.grid, n=15, type="random")
Rauthors <- readLines(file.path(R.home("doc"), "AUTHORS"))[9:28]
someAuthors <- Rauthors[seq_along(pts)]

sl1 <- list('sp.points', pts, pch=19, cex=, col='midnightblue')
sl2 <- list('sp.pointLabel', pts, label=someAuthors,
 cex=0.7, col='midnightblue',
 fontfamily='Palatino')

spplot(meuse.grid["dist"], col.regions=myCols, sp.layout=list(sl1, sl2))

pointLabel

Label placement for points to avoid overlaps

Description

Use optimization routines to find good locations for point labels without overlaps.

Usage

```r
pointLabel(x, y = NULL, labels = seq(along = x), cex = 1,
  method = c("SANN", "GA"),
  allowSmallOverlap = FALSE,
  trace = FALSE,
  doPlot = TRUE,
  ...)
```
Arguments

- **x, y**: as with `plot.default`, these provide the x and y coordinates for the point labels. Any reasonable way of defining the coordinates is acceptable. See the function `xy.coords` for details.

- **labels**: as with `text`, a character vector or expression specifying the text to be written. An attempt is made to coerce other language objects (names and calls) to expressions, and vectors and other classed objects to character vectors by `as.character`.

- **cex**: numeric character expansion factor as with `text`.

- **method**: the optimization method, either “SANN” for simulated annealing (the default) or “GA” for a genetic algorithm.

- **allowSmallOverlap**: logical; if TRUE, labels are allowed a small overlap. The overlap allowed is 2% of the diagonal distance of the plot area.

- **trace**: logical; if TRUE, status updates are given as the optimization algorithms progress.

- **doPlot**: logical; if TRUE, the labels are plotted on the existing graph with `text`.

- **...**: arguments passed along to `text` to specify labeling parameters such as `col`.

Details

Eight positions are candidates for label placement, either horizontally, vertically, or diagonally offset from the points. The default position for labels is the top right diagonal relative to the point (considered the preferred label position).

With the default settings, simulating annealing solves faster than the genetic algorithm. It is an open question as to which settles into a global optimum the best (both algorithms have parameters that may be tweaked).

The label positioning problem is NP-hard (nondeterministic polynomial-time hard). Placement becomes difficult and slows considerably with large numbers of points. This function places all labels, whether overlaps occur or not. Some placement algorithms remove labels that overlap.

Note that only `cex` is used to calculate string width and height (using `strwidth` and `strheight`), so passing a different font may corrupt the label dimensions. You could get around this by adjusting the font parameters with `par` prior to running this function.

Value

An xy list giving the x and y positions of the label as would be placed by `text(xy, labels)`.

Author(s)

Tom Short, EPRI, <tshort@epri.com>

References

- [Automatic_label_placement](http://en.wikipedia.org/wiki/Automatic_label_placement)
- [Labeling_bibliography](http://illwww.itl.uni-kiel.de/map-labeling/bibliography/)
http://www.eecs.harvard.edu/~shieber/Projects/Carto/carto.html
http://www.szoraster.com/Cartography/PracticalExperience.htm

The genetic algorithm code was adapted from the python code at:
http://meta.wikimedia.org/wiki/Map_generator.

The simulated annealing code follows the algorithm and guidelines in:
http://www.eecs.harvard.edu/~shieber/Biblio/Papers/jc.label.pdf

See Also
text, thigmophobe.labels in package plotrix

Examples

```r
n <- 50
x <- rnorm(n)*10
y <- rnorm(n)*10
plot(x, y, col = "red", pch = 20)
pointLabel(x, y, as.character(round(x,5)), offset = 0, cex = .7)

plot(x, y, col = "red", pch = 20)
pointLabel(x, y, expression(over(alpha, beta[123])), offset = 0, cex = .8)
```

ppp-class

Virtual class "ppp"

Description

Virtual S4 class definition for S3 classes in the spatstat package to allow S4-style coercion to these classes

Objects from the Class

A virtual Class: No objects may be created from it.

Author(s)

Edzer J. Pebesma
readAsciiGrid

read/write to/from (ESRI) asciiGrid format

Description

read/write to/from ESRI asciiGrid format; a fuzz factor has been added to writeAsciiGrid to force cell resolution to equality if the difference is less than the square root of machine precision.

Usage

```r
readAsciiGrid(fname, as.image = FALSE, plot.image = FALSE, 
colname = basename(fname), proj4string = CRS(as.character(NA)), 
dec=options()$OutDec)
writeAsciiGrid(x, fname, attr = 1, na.value = -9999, dec=options()$OutDec, ...)
```

Arguments

- **fname** file name
- **as.image** logical; if TRUE, a list is returned, ready to be shown with the `image` command; if FALSE an object of class `SpatialGridDataFrame-class` is returned
- **plot.image** logical; if TRUE, an image of the map is plotted
- **colname** alternative name for data column if not file basename
- **proj4string** A CRS object setting the projection arguments of the Spatial Grid returned
- **dec** decimal point character. This should be a character string containing just one single-byte character — see note below.
- **x** object of class `SpatialGridDataFrame`
- **attr** attribute column; if missing, the first column is taken; a name or a column number may be given
- **na.value** numeric; value given to missing valued cells in the resulting map
- **...** arguments passed to `write.table`, which is used to write the numeric data

Value

`readAsciiGrid` returns the grid map read; either as an object of class `SpatialGridDataFrame-class` or, if `as.image` is TRUE, as list with components `x`, `y` and `z`.

Note

In ArcGIS 8, it was not in general necessary to set the `dec` argument; it is not necessary in a mixed environment with ArcView 3.2 (R writes and ArcView reads "."), but inter-operation with ArcGIS 9 requires care because the defaults used by ArcGIS seem to be misleading, and it may be necessary to override what appear to be platform defaults by setting the argument.
readGPS

GPSbabel read interface

Description

The function reads a data frame from an attached GPS using the external program gpsbabel. The columns of the data frame need to be identified by hand because different GPS order NMEA data in different ways, and the columns should be converted to the correct classes by hand. Once the specifics of a particular GPS are identified, and ways of cleaning erroneous locations are found, the conversion of the output data frame into a usable one may be automated.

Usage

readGPS(i = "garmin", f = "usb:", type="w", invisible=TRUE, ...)

Arguments

i INTYPE: a supported file type, default "garmin"
f INFILE: the appropriate device interface, default "usb:", on Windows for serial interfaces commonly "com4:" or similar
type "w" waypoints, or "t" track, or others provided in gpsbabel
readGPS

invisible Under Windows, do not open an extra window
... arguments passed through to read.table

Details

The function just wraps: gpsbabel -i INTYPE -f INFILE -o tabsep -F - in system(), and reads the returned character vector of lines into a data frame. On some systems, INFILE may not be readable by ordinary users without extra configuration. The gpsbabel program must be present and on the user’s PATH for the function to work. Typically, for a given GPS, the user will have to experiment first to find a set of data-cleaning tricks that work, but from then on they should be repeatable.

Value

A data frame of waypoint values

Author(s)

Patrick Giraudoux and Roger Bivand

References

http://www.gpsbabel.org

Examples

Not run:
#b1 <- readGPS(f="usb:"
#str(b1)
#b2 <- b1[1:172,]
#wp0 <- b2[,c(2,3,4,8,9,19)]
#str(wp0)
#wp0$long <- wp0$V9
#wp0$lat <- as.numeric(as.character(wp0$V8))
#wp0$id <- as.character(wp0$V2)
#wp0$alt <- as.numeric(substring(as.character(wp0$V19), 1,
(nchar(as.character(wp0$V19))-1))))
#wp0$time <- as.POSIXct(strptime(paste(as.character(wp0$V3),
as.character(wp0$V4)), format="%d-%b-%y %H:%M:%S"))
#str(wp0)
#wp1 <- wp0[,-(1:6)]
#str(wp1)
#summary(wp1)

End(Not run)
Description

The `readShapeLines` function reads data from an arc/line shapefile into a `SpatialLinesDataFrame` object; the shapefile may be of type polygon, but for just plotting for example coastlines, a `SpatialLines` object is sufficient. The `writeLinesShape` function writes data from a `SpatialLinesDataFrame` object to a shapefile. Note DBF file restrictions in `write.dbf`.

Usage

```r
readShapeLines(fn, proj4string=CRS(as.character(NA)), verbose=FALSE, repair=FALSE, delete_null_obj=FALSE)
writeLinesShape(x, fn, factor2char = TRUE, max_nchar=254)
```

Arguments

- `fn` : shapefile layer name, when writing omitting the extensions *.shp, *.shx and *.dbf, which are added in the function
- `proj4string` : Object of class CRS; holding a valid proj4 string
- `verbose` : default FALSE - report type of shapefile and number of shapes
- `repair` : default FALSE: some shapefiles provided by Geolytics Inc. have values of object sizes stored in the *.shx index file that are eight bytes too large, leading the function to try to read past the end of file. If repair=TRUE, an attempt is made to repair the internal values, permitting such files to be read.
- `delete_null_obj` : if TRUE, null geometries will be removed together with their data.frame rows
- `x` : a `SpatialLinesDataFrame` object
- `factor2char` : logical, default TRUE, convert factor columns to character
- `max_nchar` : default 254, may be set to a higher limit and passed through to the DBF writer, please see Details in `write.dbf`

Details

The shpID values of the shapefile will be used as lines ID values; when writing shapefiles, the object data slot row.names are added to the DBF file as column SL_ID.

Value

a `SpatialLinesDataFrame` object

Author(s)

Roger Bivand
readShapePoints

Read points shape files into SpatialPointsDataFrame objects

Description

The `readShapePoints` reads data from a points shapefile into a `SpatialPointsDataFrame` object. The `writePointsShape` function writes data from a `SpatialPointsDataFrame` object to a shapefile. Both reading and writing can be carried out for 2D and 3D point coordinates. Note DBF file restrictions in `write.dbf`.

Usage

```r
readShapePoints(fn, proj4string = CRS(as.character(NA)), verbose = FALSE, repair=FALSE)  
writePointsShape(x, fn, factor2char = TRUE, max_nchar=254)
```

Arguments

- `fn`
 shapefile layer name, when writing omitting the extensions *.shp, *.shx and *.dbf, which are added in the function

- `proj4string`
 Object of class CRS; holding a valid proj4 string

- `verbose`
 default TRUE - report type of shapefile and number of shapes

- `repair`
 default FALSE: some shapefiles provided by Geolytics Inc. have values of object sizes stored in the *.shx index file that are eight bytes too large, leading the function to try to read past the end of file. If repair=TRUE, an attempt is made to repair the internal values, permitting such files to be read.

Examples

```r
xx <- readShapePoints(system.file("shapes/fylk-val.shp", package="maptools")][1],  
  proj4string=CRS("+proj=utm +zone=33 +datum=WGS84"))  
plot(xx, col="blue")
summary(xx)
xxx <- xx[xx$LENGTH > 30000,]
plot(xxx, col="red", add=TRUE)  
tmpfl <- paste(tempdir(), "xxline", sep="/")  
writeLinesShape(xxx, tmpfl)  
getinfo.shape(paste(tmpfl, ".shp", sep=""))
axx <- readShapeLines(tmpfl, proj4string=CRS("+proj=utm +zone=33 +datum=WGS84"))  
plot(axx, col="black", lwd=4)  
plot(axx, col="yellow", lwd=1, add=TRUE)  
unlink(paste(tmpfl, ".*", sep=""))
xx <- readShapeLines(system.file("shapes/sids.shp", package="maptools")][1],  
  proj4string=CRS("+proj=longlat +datum=NAD27"))  
plot(xx, col="blue")
```
readShapePoly

Description

The `readShapePoly` function reads data from a polygon shapefile into a `SpatialPolygonsDataFrame` object. The `writePolyShape` function writes data from a `SpatialPolygonsDataFrame` object to a shapefile. Note DBF file restrictions in `write.dbf`.

Usage

```r
readShapePoly(fn, IDvar=NULL, proj4string=CRS(as.character(NA)), 
              verbose=FALSE, repair=FALSE, force_ring=FALSE, delete_null_obj=FALSE, 
              retrieve_ABS_null=FALSE)
writePolyShape(x, fn, factor2char = TRUE, max_nchar=254)
```
readShapePoly

Arguments

- **fn**: shapefile layer name, when writing omitting the extensions *.shp, *.*shx and *.dbf, which are added in the function
- **IDvar**: a character string: the name of a column in the shapefile DBF containing the ID values of the shapes - the values will be converted to a character vector
- **proj4string**: Object of class CRS; holding a valid proj4 string
- **verbose**: default TRUE - report type of shapefile and number of shapes
- **repair**: default FALSE: some shapefiles provided by Geolytics Inc. have values of object sizes stored in the *.shx index file that are eight bytes too large, leading the function to try to read past the end of file. If repair=TRUE, an attempt is made to repair the internal values, permitting such files to be read.
- **force_ring**: if TRUE, close unclosed input rings
- **delete_null_obj**: if TRUE, null geometries will be removed together with their data.frame rows
- **retrieve_ABS_null**: default FALSE, if TRUE and delete_null_obj also TRUE, the function will return a data frame containing the data from any null geometries inserted by ABS
- **x**: a SpatialPolygonsDataFrame object
- **factor2char**: logical, default TRUE, convert factor columns to character
- **max_nchar**: default 254, may be set to a higher limit and passed through to the DBF writer, please see Details in write.dbf

Details

If no IDvar argument is given, the shpID values of the shapefile will be used as Polygons ID values; when writing shapefiles, the object data slot row.names are added to the DBF file as column SP_ID.

Value

a SpatialPolygonsDataFrame object

Author(s)

Roger Bivand

See Also

write.dbf

Examples

library(maptools)
xx <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]], IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
plot(xx, border="blue", axes=TRUE, las=1)
text(coordinates(xx), labels=row.names(xx), cex=0.6)
as(xx, "data.frame")[1:5, 1:6]
xxx <- xxxSID74 < 2.
plot(xxx, border="red", add=TRUE)
tmpfl <- paste(tempdir(), "xpoly", sep="/")
writePolyShape(xxx, tmpfl)
getinfo.shape(paste(tmpfl, ".shp", sep=""))
axx <- readShapePoly(tmpfl, proj4string=CRS("+proj=longlat +ellps=clrk66"))
plot(axx, border="black", lwd=4)
plot(axx, border="yellow", lwd=1, add=TRUE)
unlink(paste(tmpfl, ".x", sep=""))

readShapeSpatial Read shape files into Spatial*DataFrame objects

Description

The readShapeSpatial reads data from a shapefile into a Spatial*DataFrame object. The writeSpatialShape function writes data from a Spatial*DataFrame object to a shapefile. Note DBF file restrictions in write.dbf.

Usage

```
readShapeSpatial(fn, proj4string=CRS(as.character(NA)),
                verbose=FALSE, repair=FALSE, IDvar=NULL, force_ring=FALSE,
                delete_null_obj=FALSE, retrieve_ABS_null=FALSE)
writeSpatialShape(x, fn, factor2char = TRUE, max_nchar=254)
```

Arguments

- **fn**
 shapefile layer name, when writing omitting the extensions *.shp, *.shx and *.dbf, which are added in the function

- **proj4string**
 Object of class CRS; holding a valid proj4 string

- **verbose**
 default TRUE - report type of shapefile and number of shapes

- **repair**
 default FALSE: some shapefiles provided by Geolytics Inc. have values of object sizes stored in the *.shx index file that are eight bytes too large, leading the function to try to read past the end of file. If repair=TRUE, an attempt is made to repair the internal values, permitting such files to be read.

- **IDvar**
 a character string: the name of a column in the shapefile DBF containing the ID values of the shapes - the values will be converted to a character vector (Polygons only)

- **force_ring**
 if TRUE, close unclosed input rings (Polygons only)

- **delete_null_obj**
 if TRUE, null geometries inserted by ABS will be removed together with their data.frame rows (Polygons and Lines)
readShapeSpatial

retrieve_ABS_null
default FALSE, if TRUE and delete_null_obj also TRUE, the function will return a data frame containing the data from any null geometries inserted by ABS (Polygons only)

x
a vector data Spatial*DataFrame object

factor2char
logical, default TRUE, convert factor columns to character

max_nchar
default 254, may be set to a higher limit and passed through to the DBF writer, please see Details in write.dbf

Details
If no IDvar argument is given, the shpID values of the shapefile will be used as Polygons ID values; when writing shapefiles, the object data slot row.names are added to the DBF file as column SP_ID.

Value
a Spatial*DataFrame object of a class corresponding to the input shapefile

Author(s)
Roger Bivand

See Also
write.dbf

Examples

library(maptools)
x <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")\[1],
IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
summary(x)
x <- x[x\$SID74 < 2,]
tmfl <- paste(tempdir(), "xpoly", sep="/"
writeSpatialShape(x, tmfl)
getinfo.shape(paste(tmfl, ".shp", sep=""))
unlink(paste(tmfl, ".x", sep=""))
x <- readShapeSpatial(system.file("shapes/fylk-val.shp",
package="maptools")\[1], proj4string=CRS("+proj=utm +zone=33 +datum=WGS84"))
summary(x)
x <- x[x\$LENGTH > 30000,]
plot(x, col="red", add=TRUE)
tmfl <- paste(tempdir(), "xxline", sep="/"
writeSpatialShape(x, tmfl)
getinfo.shape(paste(tmfl, ".shp", sep=""))
unlink(paste(tmfl, ".x", sep=""))
x <- readShapeSpatial(system.file("shapes/baltim.shp", package="maptools")\[1])
summary(x)
x <- x[x\$PRICE < 40,]
tmfl <- paste(tempdir(), "xxpts", sep="/"
writeSpatialShape(x, tmfl)
readSplus

Read exported WinBUGS maps

Description

The function permits an exported WinBUGS map to be read into an \texttt{sp} package class \texttt{SpatialPolygons} object.

Usage

\begin{verbatim}
readSplus(file, proj4string = CRS(as.character(NA)))
\end{verbatim}

Arguments

- \texttt{file} name of file
- \texttt{proj4string} Object of class \"CRS\": holding a valid proj4 string

Value

\texttt{readSplus} returns a \texttt{SpatialPolygons} object

Note

In the example, taken from the GeoBUGS manual, the smaller part of area1 has a counter-clockwise ring direction in the data, while other rings are clockwise. This implies that it is a hole, and does not get filled. Errant holes may be filled using \texttt{checkPolygonsHoles}. The region labels are stored in the \texttt{ID} slots of the \texttt{Polygons} objects.

Author(s)

Virgilio Gomez Rubio <Virgilio.Gomez@uclm.es>

References

See Also

\texttt{map2SpatialPolygons}
Examples

```r
if (rgeosStatus()) {
  geobugs <- readSPlus(system.file("share/Splus.map", package="maptools"))
  plot(geobugs, axes=TRUE, col=1:3)
  row.names(geobugs)
  pls <- slot(geobugs, "polygons")
  sapply(pls, function(i) sapply(slot(i, "Polygons"), slot, "hole"))
  pls1 <- lapply(pls, checkPolygonsHoles)
  sapply(pls1, function(i) sapply(slot(i, "Polygons"), slot, "hole"))
  plot(SpatialPolygons(pls1), axes=TRUE, col=1:3)
}
```

Rgshhs

Read GSHHS data into sp object

Description

If the data are polygon data, the function will read GSHHS polygons into SpatialPolygons object for a chosen region, using binary shorelines from Global Self-consistent Hierarchical High-resolution (Shorelines) Geography, release 2.3.0 of February 1, 2014 (http://www.soest.hawaii.edu/pwessel/gshhg/gshhg-bin-2.3.0.zip).

The getRgshhsMap function calls Rgshhs internally to simplify the interface by returning only a SpatialPolygons object rather than a more complex list, and by calling Rgshhs twice either side of longitude 0 degrees for values of “xlim” straddling 0, then merging the polygons retrieved.

If the data are line data, the borders or river lines will be read into a SpatialLines object. The data are provided in integer form as millionths of decimal degrees. Reading of much earlier versions of the GSHHS binary files will fail with an error message. The netCDF GSHHS files distributed with GMT >= 4.2 cannot be read as they are in a very different format.

Usage

```r
Rgshhs(fn, xlim = NULL, ylim = NULL, level = 4, minarea = 0, shift = FALSE, 
verbose = TRUE, no.clip = FALSE, properly=FALSE, avoidGEOS=FALSE, 
checkPolygons=FALSE)
getRgshhsMap(fn = system.file("share/gshhs_c.b", package= "maptools"), 
xlim, ylim, level = 1, shift = TRUE, verbose = TRUE, no.clip = FALSE, 
properly=FALSE, avoidGEOS=FALSE, checkPolygons=FALSE)
```

Arguments

- `fn`: filename or full path to GSHHS 2.3.0 file to be read
- `xlim`: longitude limits within 0-360 in most cases, negative longitudes are also found east of the Atlantic, but the Americas are recorded as positive values
- `ylim`: latitude limits
- `level`: maximum GSHHS level to include, defaults to 4 (everything), setting 1 will only retrieve land, no lakes
minarea minimum area in square km to retrieve, default 0
shift default FALSE, can be used to shift longitudes > 180 degrees to below zero, beware of artefacts involving unhandled polygon splitting at 180 degrees
verbose default TRUE, print progress reports
no.clip default FALSE, if TRUE, do not clip output polygons to bounding box
properly default FALSE, if TRUE use \texttt{gContainsProperly} rather than \texttt{gContains}, here FALSE because clip rectangle touches clipped objects, so they are not properly contained
avoidGEOS default FALSE; if TRUE force use of \texttt{gpclib} even when \texttt{rgeos} is available
checkPolygons default FALSE, if TRUE, check using GEOS, which may re-order the member Polygon objects with respect to the returned polydata data frame rows

Details

The package is distributed with the coarse version of the shoreline data, and much more detailed versions may be downloaded from the referenced websites. The data is of high quality, matching the accuracy of SRTM shorelines for the full dataset (but not for inland waterbodies). In general, users will construct study region SpatialPolygons objects, which can then be exported (for example as a shapefile), or used in other R packages (such as PBSmapping). The largest land polygons take considerable time to clip to the study region, certainly many minutes for an extract from the full resolution data file including Eurasia (with Africa) or the Americas. For this reason, do not give up if nothing seems to be happening after the (verbose) message: "Rgshhs: clipping <m> of <n> polygons ..." appears. Clipping the largest polygons in full resolution also needs a good deal of memory.

Value

for polygon data, a list with the following components:

\texttt{polydata} data from the headers of the selected GSHHS polygons

\texttt{belongs} a matrix showing which polygon belongs to (is included in) which polygon, going from the highest level among the selected polygons down to 1 (land); levels are: 1 land, 2 lake, 3 island_in_lake, 4 pond_in_island_in_lake.

\texttt{new_belongs} a ragged list of polygon inclusion used for making SP

\texttt{SP} a SpatialPolygons object; this is the principal output object, and will become the only output object as the package matures

the \texttt{getRgshhsMap} returns only a SpatialPolygons object; for line data, a list with the following component:

\texttt{SP} a SpatialLines object

Note

A number of steps are taken in this implementation that are unexpected, print messages, and so require explanation. Following the extraction of polygons intersecting the required region, a check is made to see if Antarctica is present. If it is, a new southern border is imposed at the southern ylim
value or -90 if no ylim value is given. When clipping polygons seeming to intersect the required region boundary, it can happen that no polygon is left within the region (for example when the boundaries are overlaid, but also because the min/max polygon values in the header may not agree with the polygon itself (one case observed for a lake west of Groningen). The function then reports a null polygon. Another problem occurs when closed polygons are cut up during the finding of intersections between polygons and the required region boundary.

By default, if the rgeos package is available, it is used for topology operations. If it is not available, the gpclib package may be used. Please also note that gpclib has a restricted licence.

Author(s)

Roger Bivand

References

Examples

```r
if (rgeosStatus()) {
  gshhs.c.b <- system.file("share/gshhs.c.b", package="maptools")
  WEx <- c(-12, 3)
  WEy <- c(48, 59)
  WE <- getGshhsMap(gshhs.c.b, xlim=WEx, ylim=WEy)
  plot(WE, col="khaki", xlim=WEx, ylim=WEy, xaxs="i", yaxs="i", axes=TRUE)
  NZx <- c(160,180)
  NZy <- c(-50,-30)
  NZ <- Gshhs(gshhs.c.b, xlim=NZx, ylim=NZy)
  plot(NZ$SP, col="khaki", pbg="azure2", xlim=NZx, ylim=NZy, xaxs="i", yaxs="i", axes=TRUE)
  GLx <- c(265,285)
  GLy <- c(40,50)
  GL <- Gshhs(gshhs.c.b, xlim=GLx, ylim=GLy)
  plot(GL$SP, col="khaki", pbg="azure2", xlim=GLx, ylim=GLy, xaxs="i", yaxs="i", axes=TRUE)
  BNLx <- c(2,8)
  BNLY <- c(49,54)
  wdb_lines <- system.file("share/wdb_borders.c.b", package="maptools")
  BNLp <- Gshhs(gshhs.c.b, xlim=BNLx, ylim=BNLY)
  BNL1 <- Gshhs(wdb_lines, xlim=BNLx, ylim=BNLY)
  plot(BNLp$SP, col="khaki", pbg="azure2", xlim=BNLx, ylim=BNLY, xaxs="i", yaxs="i", axes=TRUE)
  lines(BNL1$SP)
  xlims <- c(0,360)
  ylims <- c(-90,90)
  world <- Gshhs(gshhs.c.b, xlim=xlims, ylim=ylims, level=1, checkPolygons=TRUE)
}
```
snapPointsToLines

Description

This function snaps a set of points to a set of lines based on the minimum distance of each point to any of the lines. This function does not work with geographic coordinates.

Usage

```r
snapPointsToLines(points, lines, maxDist = NA, withAttrs = TRUE, idField=NA)
```

Arguments

- **points**
 - An object of the class SpatialPoints or SpatialPointsDataFrame.
- **lines**
 - An object of the class SpatialLines or SpatialLinesDataFrame.
- **maxDist**
 - Numeric value for establishing a maximum distance to avoid snapping points that are farther apart. This parameter is optional.
- **withAttrs**
 - Boolean value for preserving (TRUE) or getting rid (FALSE) of the original point attributes. Default: TRUE. This parameter is optional.
- **idField**
 - A string specifying the field which contains each line’s id. This id will be transferred to the snapped points data set to distinguish the line which each point was snapped to.

Value

SpatialPointsDataFrame object as defined by the R package ‘sp’. This object contains the snapped points, therefore all of them lie on the lines.

Author(s)

German Carrillo

See Also

nearestPointOnSegment, nearestPointOnLine, sp

Examples

```r
# From the sp vignette
l1 = cbind(c(1,2,3),c(3,2,2))
l1a = cbind(l1[,1]+.05,l1[,2]+.05)
l2 = cbind(c(1,2,3),c(1,1.5,1))
S11 = Line(l1)
S11a = Line(l1a)
S12 = Line(l2)
S1 = Lines(list(S11, S11a), ID="a")
```
sp2Mondrian

S2 = Lines(list(S12), ID="b")
S1 = SpatialLines(list(S1,S2))
df = data.frame(z = c(1,2), row.names=sapply(slot(S1, "lines"), function(x) slot(x, "ID")))
S1df = SpatialLinesDataFrame(S1, data = df)

xc = c(1.2,1.5,2.5)
yc = c(1.5,2.2,1.6)
Spoints = SpatialPoints(cbind(xc, yc))
if (rgeosStatus()) snapPointsToLines(Spoints, S1df)

sp2Mondrian write map data for Mondrian

Description
The function outputs a SpatialPolygonsDataFrame object to be used by Mondrian

Usage
sp2Mondrian(SP, file, new_format=TRUE)

Arguments

SP a SpatialPolygonsDataFrame object
file file where output is written
new_format default TRUE, creates a text data file and a separate map file; the old format put
 both data sets in a single file - the map file is named by inserting "MAP_" into
 the file= argument after the rightmost directory separator (if any)

Note
At this release, the function writes out a text file with both data and polygon(s) identified as belonging
to each row of data.

Author(s)
Patrick Hausmann and Roger Bivand

References
http://rosuda.org/Mondrian/
Examples

```r
## Not run:
exx <- readShapePoly(system.file("shapes/columbus.shp", package="maptools")[[1]])
sp2Mondrian(exx, file="columbus1.txt")
exx <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]])
sp2Mondrian(exx, file="sids1.txt")
```

End(Not run)

sp2tmap

Convert SpatialPolygons object for Stata tmap command

Description

The function converts a SpatialPolygons object for use with the Stata tmap command, by creating a data frame with the required columns.

Usage

```r
sp2tmap(SP)
```

Arguments

- **SP**
 - a SpatialPolygons object

Value

A data frame with three columns:

- **_ID**
 - an integer vector of polygon identifiers in numeric order
- **_X**
 - numeric x coordinate
- **_Y**
 - numeric y coordinate

and an `ID_n` attribute with the named polygon identifiers

Author(s)

Roger Bivand

References

See Also

write.dta
Examples

```r
## Not run:
xx <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]],
    IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
plot(xx, border="blue", axes=TRUE, las=1)
tmapdf <- sp2tmap(as(xx, "SpatialPolygons"))
if (require(foreign)) {
    write.dta(tmapdf, file="NCmap.dta", version=7)
    NCdf <- as(xx, "data.frame")
    NCdf$ID_n <- attr(tmapdf, "ID_names")
    write.dta(NCdf, file="NC.dta", version=7)}
## End(Not run)
```

sp2WB

Export SpatialPolygons object as S-Plus map for WinBUGS

Description

The function exports an sp SpatialPolygons object into a S-Plus map format to be import by WinBUGS.

Usage

```r
sp2WB(map, filename, Xscale = 1, Yscale = Xscale, plotorder = FALSE)
```

Arguments

- **map** a SpatialPolygons object
- **filename** file where output is written
- **Xscale, Yscale** scales to be written in the output file
- **plotorder** default=FALSE, if TRUE, export polygons in plotting order

Author(s)

Virgilio GÃ³mez Rubio, partly derived from earlier code by Thomas Jagger

References

SpatialLines2PolySet

Convert sp line and polygon objects to PBSmapping PolySet objects

Description

Functions SpatialLines2PolySet and SpatialPolygons2PolySet convert objects of sp classes to PolySet class objects as defined in the PBSmapping package, and PolySet2SpatialLines and PolySet2SpatialPolygons convert in the opposite direction.

Usage

SpatialLines2PolySet(SL)
SpatialPolygons2PolySet(SpP)
PolySet2SpatialLines(PS)
PolySet2SpatialPolygons(PS, close_polys=TRUE)

Arguments

SL a SpatialLines object as defined in the sp package
SpP a SpatialPolygons object as defined in the sp package
PS a PolySet object
close_polys should polygons be closed if open

Value

PolySet objects as defined in the PBSmapping package

Author(s)

Roger Bivand and Andrew Niccolai
SpatialLinesMidPoints

Description

The function converts SpatialLinesDataFrame to SpatialPointsDataFrame with points at the midpoints of the line segments.

Usage

SpatialLinesMidPoints(sldf)

Arguments

sldf A SpatialLines or SpatialLinesDataFrame object

Details

The function builds a SpatialPointsDataFrame from the midpoints of Line objects belonging to Lines objects in an object inheriting from a Spatial Lines object. The output data slot contains an index variable showing which Lines object the midpoints belong to.

See Also

PolySet, MapGen2SL

Examples

```r
if(require(PBSmapping) & require(maps)) {
  nor_coast_lines <- map("world", interior=FALSE, plot=FALSE, xlim=c(4,32), ylim=c(58,72))
  nor_coast_lines <- pruneMap(nor_coast_lines, xlim=c(4,32), ylim=c(58,72))
  nor_coast_lines_sp <- map2SpatialLines(nor_coast_lines,
    proj4string=CRS("+proj=longlat +datum=wgs84"))
  nor_coast_lines_PS <- SpatialLines2PolySet(nor_coast_lines_sp)
  summary(nor_coast_lines_PS)
  plotLines(nor_coast_lines_PS)
  o3 <- PolySet2SpatialLines(nor_coast_lines_PS)
  plot(o3, axes=TRUE)
  nor_coast_poly <- map("world", "norway", fill=TRUE, col="transparent",
    plot=FALSE, ylim=c(58,72))
  IDs <- sapply(strsplit(nor_coast_poly$names, ":"), function(x) x[1])
  nor_coast_poly_sp <- map2SpatialPolygons(nor_coast_poly, IDs=IDs,
    proj4string=CRS("+proj=longlat +datum=wgs84"))
  nor_coast_poly_PS <- SpatialPolygons2PolySet(nor_coast_poly_sp)
  summary(nor_coast_poly_PS)
  plotPolygons(nor_coast_poly_PS)
  o1 <- PolySet2SpatialPolygons(nor_coast_poly_PS)
  plot(o1, axes=TRUE)
}
```
Value

A SpatialPointsDataFrame object created from the input object.

Author(s)

Jonathan Callahan, modified by Roger Bivand

Examples

xx <- readShapeLines(system.file("shapes/fylk-val.shp", package="maptools")[[1]],
 proj4string=CRS("+proj=utm +zone=33 +datum=WGS84"))
plot(xx, col="blue")
spdf <- SpatialLinesMidPoints(xx)
plot(spdf, col="orange", add=TRUE)

Description

spCbind provides cbind-like methods for Spatial*DataFrame objects in addition to the $, [[<- and [[<- methods already available.

Methods

obj = "SpatialPointsDataFrame", x = "data.frame" cbind a data frame to the data slot of a SpatialPointsDataFrame object
obj = "SpatialPointsDataFrame", x = "vector" cbind a vector to the data slot of a SpatialPointsDataFrame object
obj = "SpatialLinesDataFrame", x = "data.frame" cbind a data frame to the data slot of a SpatialLinesDataFrame object; the data frame argument must have row names set to the Lines ID values, and should be re-ordered first by matching against a shared key column
obj = "SpatialLinesDataFrame", x = "vector" cbind a vector to the data slot of a SpatialLinesDataFrame object
obj = "SpatialPolygonsDataFrame", x = "data.frame" cbind a data frame to the data slot of a SpatialPolygonsDataFrame object; the data frame argument must have row names set to the Polygons ID values, and should be re-ordered first by matching against a shared key column
obj = "SpatialPolygonsDataFrame", x = "vector" cbind a vector to the data slot of a SpatialPolygonsDataFrame object

Author(s)

Roger Bivand

See Also

`spChFIDs-methods, spRbind-methods`
SplashDams

Examples

```r
xx <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
  IDVar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=WGS84"))
library(foreign)
xtra <- read.dbf(system.file("share/nc_xtra.dbf", package="maptools")[1])
o <- match(xx$CNTY_ID, xtra$CNTY_ID)
xtra1 <- xtra[o,]
row.names(xtra1) <- xx$FIPSNO
xx1 <- spCbind(xx, xtra1)
names(xx1)
identical(xx1$CNTY_ID, xx1$CNTY_ID.1)
```

Description

Data for Splash Dams in western Oregon

Usage

`data(SplashDams)`

Format

The format is: Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots ..@ data .'.data.frame': 232 obs. of 6 variables:$ streamName : Factor w/ 104 levels "Abiqua Creek",..: 12 12 60 60 49 49 9 9 18$ locationCode: Factor w/ 3 levels "h","l","m": 1 1 1 1 1 1 1 1 1 1$ height : int [1:232] 4 4 NA NA NA NA 10 NA NA NA$ lastDate : int [1:232] 1956 1956 1957 1936 1936 1929 1909 1919 1919 1919$ owner : Factor w/ 106 levels "A. Stefani","A.H. Blakesley",..: 42 42 42 84 84 24 24 25 25 25$ datesUsed : Factor w/ 118 levels "?-1870?",1899?,..: 92 92 93 91 91 72 61 94 94 94@ coords.nrs : num(0) ..@ coords : num [1:232, 1:3] -124 -124 -124 -124 -124 ... attr(*, "dimnames")=List of 2$: NULL$: chr [1:3] "coords.x1" "coords.x2" "coords.x3" ..@ bbox : num [1:2, 1:2] -124.2 42.9 0 -122.4 46.2 ... attr(*, "dimnames")=List of 2$: chr [1:3] "coords.x1" "coords.x2" "coords.x3" .. attr (*, "dimnames")=List of 2$: chr [1:3] "min" "max" ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots ..@ projargs: chr " +proj=longlat +ellps=WGS84"
```

Source


References

Examples

data(SplashDams)
plot(SplashDams, axes=TRUE)

spRbind-methods  rbind for spatial objects

Description

spRbind provides rbind-like methods for Spatial*DataFrame objects

Methods

obj = "SpatialPoints", x = "SpatialPoints"  rbind two SpatialPoints objects

obj = "SpatialPointsDataFrame", x = "SpatialPointsDataFrame"  rbind two SpatialPointsDataFrame objects

obj = "SpatialLines", x = "SpatialLines"  rbind two SpatialLines objects

obj = "SpatialLinesDataFrame", x = "SpatialLinesDataFrame"  rbind two SpatialLinesDataFrame objects

obj = "SpatialPolygons", x = "SpatialPolygons"  rbind two SpatialPolygons objects

obj = "SpatialPolygonsDataFrame", x = "SpatialPolygonsDataFrame"  rbind two SpatialPolygonsDataFrame objects

Note

In addition to the spRbind-methods, there are also rbind-methods for Spatial* objects. The differences are:

1. spRbind-methods can bind 2 objects, whereas rbind-methods can bind multiple objects
2. some rbind can accept objects with duplicated IDs, for all spRbind-methods these have to be modified explicitly, e.g. by calling spChFIDs-methods

Author(s)

Roger Bivand

See Also

spChFIDs-methods, spCbind-methods
Examples

```r
xx <- readShapePoly(system.file("shapes/sids.shp", package="maptools"))[1],
 IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))
summary(xx)
xx$FIPSNO
xx1 <- xx[xx$CNYT_ID < 1982,]
xx2 <- xx[xx$CNYT_ID >= 1982,]
xx3 <- spRbind(xx2, xx1)
summary(xx3)
xx3$FIPSNO
```

Description

A SpatialPolygonsDataFrame object (for use with the maptools package) to plot a Visibility Based Map.

Usage

data(state.vbm)

Details

A SpatialPolygonsDataFrame object (for use with the maptools package) to plot a map of the US states where the sizes of the states have been adjusted to be more equal.

This map can be useful for plotting state data using colors patterns without the larger states dominating and the smallest states being lost.

The original map is copyrighted by Mark Monmonier. Official publications based on this map should acknowledge him. Comercial publications of maps based on this probably need permission from him to use.

Author(s)

Greg Snow <greg.snow@imail.org> (of this compilation)

Source

The data was converted from the maps library for S-PLUS. S-PLUS uses the map with permission from the author. This version of the data has not received permission from the author (no attempt made, not that it was refused), most of my uses I feel fall under fair use and do not violate copyright, but you will need to decide for yourself and your applications.

References

Examples

data(state.vbm)
plot(state.vbm)

tmp <- state.x77[, 'HS Grad']
tmp2 <- cut(tmp, seq(min(tmp), max(tmp), length.out=11),
include.lowest=TRUE)
plot(state.vbm, col=cm.colors(10)[tmp2])

Methods for sun ephemerides calculations

Description

Functions for calculating sunrise, sunset, and times of dawn and dusk, with flexibility for the various formal definitions. They use algorithms provided by the National Oceanic & Atmospheric Administration (NOAA).

Usage

## S4 method for signature 'SpatialPoints, POSIXct'
crepuscule(crsds, dateTime, solarDep, direction=c("dawn", "dusk"),
            POSIXct.out=FALSE)

## S4 method for signature 'matrix, POSIXct'
crepuscule(crsds, dateTime,
            proj4string=CRS("+proj=longlat +datum=WGS84"), solarDep,
            direction=c("dawn", "dusk"), POSIXct.out=FALSE)

## S4 method for signature 'SpatialPoints, POSIXct'
sunrise(crsds, dateTime, direction=c("sunrise", "sunset"),
          POSIXct.out=FALSE)

## S4 method for signature 'matrix, POSIXct'
sunrise(crsds, dateTime,
          proj4string=CRS("+proj=longlat +datum=WGS84"),
          direction=c("sunrise", "sunset"), POSIXct.out=FALSE)

## S4 method for signature 'SpatialPoints, POSIXct'
solarnoon(crsds, dateTime, POSIXct.out=FALSE)

## S4 method for signature 'matrix, POSIXct'
solarnoon(crsds, dateTime,
          proj4string=CRS("+proj=longlat +datum=WGS84"),
          POSIXct.out=FALSE)

## S4 method for signature 'SpatialPoints, POSIXct'
solarpos(crsds, dateTime, ...)

## S4 method for signature 'matrix, POSIXct'
solarpos(crsds, dateTime,
          proj4string=CRS("+proj=longlat +datum=WGS84"), ...)
Arguments

- **crds**: a `SpatialPoints` or `matrix` object, containing x and y coordinates (in that order).
- **dateTime**: a `POSIXct` object with the date and time associated to calculate ephemerides for points given in `crds`.
- **solarDep**: numeric vector with the angle of the sun below the horizon in degrees.
- **direction**: one of "dawn", "dusk", "sunrise", or "sunset", indicating which ephemerides should be calculated.
- **POSIXct.out**: logical indicating whether `POSIXct` output should be included.
- **proj4string**: string with valid projection string describing the projection of data in `crds`.
- **...**: other arguments passed through.

Details

NOAA used the reference below to develop their Sunrise/Sunset

http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html and Solar Position

http://www.srrb.noaa.gov/highlights/sunrise/azel.html Calculators. The algorithms include corrections for atmospheric refraction effects.

Input can consist of one location and at least one `POSIXct` times, or one `POSIXct` time and at least one location. `solarDep` is recycled as needed.

Do not use the daylight savings time zone string for supplying `dateTime`, as many OS will not be able to properly set it to standard time when needed.

Value

crepuscule, `sunriset`, and `solarnoon` return a numeric vector with the time of day at which the event occurs, expressed as a fraction, if `POSIXct.out` is `FALSE`; otherwise they return a data frame with both the fraction and the corresponding `POSIXct` date and time.

`solarpos` returns a matrix with the solar azimuth (in degrees from North), and elevation.

Warning

Compared to NOAA's original Javascript code, the sunrise and sunset estimates from this translation may differ by +/- 1 minute, based on tests using selected locations spanning the globe. This translation does not include calculation of prior or next sunrises/sunsets for locations above the Arctic Circle or below the Antarctic Circle.

Note

NOAA notes that “for latitudes greater than 72 degrees N and S, calculations are accurate to within 10 minutes. For latitudes less than +/- 72 degrees accuracy is approximately one minute.”
Author(s)
Sebastian P. Luque <spluque@gmail.com>, translated from Greg Pelletier’s <gpel461@ecy.wa.gov> VBA code (available from http://www.ecy.wa.gov/programs/eap/models.html), who in turn translated it from original Javascript code by NOAA (see Details). Roger Bivand <roger.bivand@nhh.no> adapted the code to work with sp classes.

References

Examples
```r
Location of Helsinki, Finland, in decimal degrees,
as listed in NOAA’s website
hels <- matrix(c(24.97, 60.17), nrow=1)
Hels <- SpatialPoints(hels, proj4string=CRS("+proj=longlat +datum=WGS84"))
d041224 <- as.POSIXct("2004-12-24", tz="EET")
Astronomical dawn
crepuscle(hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
crepuscle(Hels, d041224, solarDep=18, direction="dawn", POSIXct.out=TRUE)
Nautical dawn
crepuscle(hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
crepuscle(Hels, d041224, solarDep=12, direction="dawn", POSIXct.out=TRUE)
Civil dawn
crepuscle(hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
crepuscle(Hels, d041224, solarDep=6, direction="dawn", POSIXct.out=TRUE)
solarnoon(hels, d041224, POSIXct.out=TRUE)
solarnoon(Hels, d041224, POSIXct.out=TRUE)
solarplos(hels, as.POSIXct(Sys.time(), tz="EET"))
solarplos(Hels, as.POSIXct(Sys.time(), tz="EET"))
sunriset(hels, d041224, direction="sunrise", POSIXct.out=TRUE)
sunriset(Hels, d041224, direction="sunrise", POSIXct.out=TRUE)
Using a sequence of dates
Hels_seq <- seq(from=d041224, length.out=365, by="days")
up <- sunriset(Hels, Hels_seq, direction="sunrise", POSIXct.out=TRUE)
down <- sunriset(Hels, Hels_seq, direction="sunset", POSIXct.out=TRUE)
day_length <- down$ttime - up$ttime
plot(Hels_seq, day_length, type="l")
Using a grid of spatial points for the same point in time
Not run:
grd <- GridTopology(c(-179,-89), c(1,1), c(359,179))
SP <- SpatialPoints(coordinates(grd),
 proj4string=CRS("+proj=longlat +datum=WGS84"))
wint <- as.POSIXct("2004-12-21", tz="GMT")
win <- crepuscle(SP, wint, solarDep=6, direction="dawn")
SPDF <- SpatialGridDataFrame(grd,
 proj4string=CRS("+proj=longlat +datum=WGS84"),
 data=data.frame(winter=win))
image(SPDF, axes=TRUE, col=cm.colors(40))
End(Not run)
```
symbolsInPolys

Place grids of points over polygons

Description

Place grids of points over polygons with chosen density and/or symbols (suggested by Michael Wolf).

Usage

symbolsInPolys(pl, dens, symb = "+", compatible = FALSE)

Arguments

pl an object of class SpatialPolygons or SpatialPolygonsDataFrame

dens number of symbol plotting points per unit area; either a single numerical value for all polygons, or a numeric vector the same length as pl with values for each polygon

symb plotting symbol; either a single value for all polygons, or a vector the same length as pl with values for each polygon

compatible what to return, if TRUE a list of matrices of point coordinates, one matrix for each member of pl, with a symb attribute, if false a SpatialPointsDataFrame with a symb column

Details

The dots are placed in a grid pattern with the number of points per polygon being polygon area times density (number of dots not guaranteed to be the same as the count). When the polygon is made up of more than one part, the dots will be placed in proportion to the relative areas of the clockwise rings (anticlockwise are taken as holes). From maptools release 0.5-2, correction is made for holes in the placing of the dots, but depends on hole values being correctly set, which they often are not.

Value

The function returns a list of matrices of point coordinates, one matrix for each member of pl; each matrix has a symb attribute that can be used for setting the pch argument for plotting. If the count of points for the given density and polygon area is zero, the list element is NULL, and can be tested when plotting - see the examples.

Note

Extension to plot pixmaps at the plotting points using addlogo() from the pixmap package is left as an exercise for the user.
thinnedSpatialPoly

Douglas-Peuker line generalization for Spatial Polygons

Description

The function applies the implementation of the Douglas-Peuker algorithm for line generalization or simplification (originally from shapefiles) to objects inheriting from Spatial Polygons. It does not preserve topology, so is suitable for visualisation, but not for the subsequent analysis of the polygon boundaries, as artefacts may be created, and boundaries of neighbouring entities may be generalized differently. If the rgeos package is available, thinnedSpatialPolyGEOS will be used with partial topology preservation instead of the R implementation here by passing arguments through.

Usage

thinnedSpatialPoly(SP, tolerance, minarea=0, topologyPreserve = FALSE, avoidGEOS = FALSE)

Arguments

SP an object inheriting from the SpatialPolygons class
tolerance the tolerance value in the metric of the input objectminarea the smallest area of Polygon objects to be retained, ignored if rgeos used
**topologyPreserve**

Choose between two `rgeos` options: logical determining if the algorithm should attempt to preserve the topology (nodes not complete edges) of the original geometry.

**avoidGEOS**

Use R DP code even if `rgeos` is available.

**Value**

An object of the same class as the input object.

**Note**

Warnings reporting: Non-finite label point detected and replaced, reflect the changes in the geometries of the polygons induced by line generalization.

**Author(s)**

Ben Stabler, Michael Friendly, Roger Bivand

**References**


**Examples**

```r
xx <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[[1]],
 IDVar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66")
object.size(as(xx, "SpatialPolygons"))
xxx <- thinnedSpatialPoly(xx, tolerance=0.05, minarea=0.001)
object.size(as(xxx, "SpatialPolygons"))
par(mfrow=c(2,1))
plot(xx)
plot(xxx)
par(mfrow=c(1,1))
```

---

**unionSpatialPolygons**  
**Aggregate Polygons in a SpatialPolygons object**

**Description**

The function aggregates Polygons in a SpatialPolygons object, according to the IDs vector specifying which input Polygons belong to which output Polygons; internal boundaries are dissolved using the `rgeos` package `gUnaryUnion` function. If the `rgeos` package is not available, and if the `gpclib` package is available and the user confirms that its restrictive license conditions are met, its `union` function will be used.
unionSpatialPolygons

Usage

unionSpatialPolygons(SpP, IDs, threshold=NULL, avoidGEOS=FALSE, avoidUnaryUnion=FALSE)

Arguments

SpP
A SpatialPolygons object as defined in package sp

IDs
A vector defining the output Polygons objects, equal in length to the length of the polygons slot of SpRs; it may be character, integer, or factor (try table(factor(IDs)) for a sanity check). It may contain NA values for input objects not included in the union

threshold
if not NULL, an area measure below which slivers will be discarded (some polygons have non-identical boundaries, for instance along rivers, generating slivers on union which are artefacts, not real sub-polygons)

avoidGEOS
default FALSE; if TRUE force use of gpclib even when GEOS is available

avoidUnaryUnion
avoid gUnaryUnion if it is available; not relevant before GEOS 3.3.0

Value

Returns an aggregated SpatialPolygons object named with the aggregated IDs values in their sorting order; see the ID values of the output object to view the order.

Warning

When using GEOS Unary Union, it has been found that some polygons are not dissolved correctly when the absolute values of the coordinates are very small. No work-around is available at present.

Author(s)

Roger Bivand

Examples

if (rgeosStatus()) {
  ncl <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[[1]],
    proj4string=CRS("+proj=longlat +datum=NAD27"))
  lps <- coordinates(ncl)
  ID <- cut(lps[,1], quantile(lps[,1]), include.lowest=TRUE)
  reg4 <- unionSpatialPolygons(ncl, ID)
  row.names(reg4)
}
Description

The object loaded is a `SpatialPolygonsDataFrame` object containing a slightly modified version of Bjoern Sandvik's improved version of `world_borders.zip - TM_WORLD_BORDERS_SIMPL-0.2.zip` dataset from the Mapping Hacks geodata site. The country Polygons objects and the data slot data frame row numbers have been set to the ISO 3166 three letter codes.

Usage

data(wrld_simpl)

Format

The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots; the data clot contains a data.frame with 246 obs. of 11 variables:

**FIPS** factor of FIPS country codes  
**ISO2** factor of ISO 2 character country codes  
**ISO3** factor of ISO 3 character country codes  
**UN** integer vector of UN country codes  
**NAME** Factor of country names  
**AREA** integer vector of area values  
**POP2005** integer vector of population in 2005  
**REGION** integer vector of region values  
**SUBREGION** integer vector of subregion values  
**LON** numeric vector of longitude label points  
**LAT** numeric vector of latitude label points

The object is in geographical coordinates using the WGS84 datum.

Source

http://mappinghacks.com/data/TM_WORLD_BORDERS_SIMPL-0.2.zip

Examples

data(wrld_simpl)  
plot(wrld_simpl)
Index

+Topic **aplot**
  pointLabel, 42
+Topic **classes**
  ppp-class, 44
+Topic **datasets**
  gpcholes, 19
  SplashDams, 65
  state.vbm, 67
  wrld_simpl, 75
+Topic **manip**
  sun-methods, 68
+Topic **methods**
  elide-methods, 12
  spcbind-methods, 64
  sprbind-methods, 66
  sun-methods, 68
+Topic **programming**
  readAsciGrid, 45
+Topic **spatial**
  as.ppp, 3
  ccmaps, 6
  checkPolygonsHoles, 7
  ContourLines2SLDF, 10
  dotsInPoly, 11
  elide-methods, 12
  gcDestination, 14
  GE_SpatialGrid, 17
  getinfo.shape, 15
  getKMLcoordinates, 16
  gzAzimuth, 20
  kmLine, 21
  kmLines, 23
  kmOverlay, 24
  kmPoints, 26
  kmPolygon, 27
  kmPolygons, 29
  leglabs, 31
  map2SpatialPolygons, 34
  nearestPointOnLine, 36
  nearestPointOnSegment, 37
  nowrapRecenter, 38
  pal2SpatialPolygons, 39
  readGPS, 46
  readShapeLines, 48
  readShapePoints, 49
  readShapePoly, 50
  readShapeSpatial, 52
  readSplus, 54
  Rgshhs, 55
  snapPointsToLines, 58
  sp2Mondrian, 59
  sp2Tmap, 60
  sp2WB, 61
  SpatialLines2PolySet, 62
  SpatialLinesMidPoints, 63
  spCbind-methods, 64
  spRbind-methods, 66
  symbolsInPoly, 71
  thinnedSpatialPoly, 72
  unionSpatialPolygons, 73
+Topic **utilities**
  sun-methods, 68

ArcObj2SLDF (ContourLines2SLDF), 10
as.im.SpatialGridDataFrame (as.ppp), 3
as.owin.SpatialGridDataFrame (as.ppp), 3
as.owin.SpatialPixelsDataFrame (as.ppp), 3
as.owin.SpatialPolygons (as.ppp), 3
as.psp.Line (as.ppp), 3
as.psp.Lines (as.ppp), 3
as.psp.SpatialLines (as.ppp), 3
as.psp.SpatialLinesDataFrame (as.ppp), 3
as.SpatialGridDataFrame.im (as.ppp), 3
INDEX

as.SpatialGridDataFrame.ppp (as.ppp), 3
as.SpatialLines.psp (as.ppp), 3
as.SpatialPoints.ppp (as.ppp), 3
as.SpatialPointsDataFrame.ppp (as.ppp), 3
as.SpatialPolygons.owin (as.ppp), 3
as.SpatialPolygons.tess (as.ppp), 3

CCmaps, 6
checkPolygonsHoles, 7, 54
coerce, im, SpatialGridDataFrame-method (as.ppp), 3
coerce, Line, psp-method (as.ppp), 3
coerce, Lines, psp-method (as.ppp), 3
coerce, owin, SpatialPolygons-method (as.ppp), 3
coerce, ppp, SpatialGridDataFrame-method (as.ppp), 3
coerce, ppp, SpatialPoints-method (as.ppp), 3
coerce, ppp, SpatialPointsDataFrame-method (as.ppp), 3
coerce, psp, SpatialLines-method (as.ppp), 3
coerce, SpatialGridDataFrame, im-method (as.ppp), 3
coerce, SpatialGridDataFrame, owin-method (as.ppp), 3
coerce, SpatialLines, psp-method (as.ppp), 3
coerce, SpatialLinesDataFrame, psp-method (as.ppp), 3
coerce, SpatialPixelsDataFrame, owin-method (as.ppp), 3
coop, SpatialPoints, ppp-method (as.ppp), 3
coor, SpatialPointsDataFrame, ppp-method (as.ppp), 3
coor, SpatialPolygons, owin-method (as.ppp), 3
coor, tess, SpatialPolygons-method (as.ppp), 3
ContourLines2SLDF, 10
crepuscule (sun-methods), 68
crepuscule, matrix, POSIXct-method (sun-methods), 68
crepuscule, SpatialPoints, POSIXct-method (sun-methods), 68
crepuscule-methods (sun-methods), 68

CRS-class, 10
dotsInPolys, 11
elide (elide-methods), 12
elide, SpatialLines-method (elide-methods), 12
elide, SpatialLinesDataFrame-method (elide-methods), 12
elide, SpatialPoints-method (elide-methods), 12
elide, SpatialPointsDataFrame-method (elide-methods), 12
elide, SpatialPolygons-method (elide-methods), 12
elide-methods, 12
findInterval, 32
gcDestination, 14
gContains, 8, 56
gContainsProperly, 8, 56
GE_SpatialGrid, 17, 25
getinfo.shape, 15
getKMLcoordinates, 16
getRgshhsMap (Rgshhs), 55
gpcholes, 19
gpclipPermit (checkPolygonsHoles), 7
gpclipPermitStatus (checkPolygonsHoles), 7
gzAzimuth, 15, 20
h1pl (gpcholes), 19
h2pl (gpcholes), 19
im-class (ppp-class), 44
image, 46
kmlLine, 17, 21, 27, 28
kmlLines, 23, 30
kmlOverlay, 18, 22, 24, 24, 27, 28
kmlPoints, 26
kmlPolygon, 17, 22, 24, 27, 27, 30
kmlPolygons, 29
label (lineLabel), 32
label, SpatialLines-method (lineLabel), 32
INDEX

labelMmethods (lineLabel), 32
leglabs, 31
levelplot, 6
Line, 22, 24, 27
lineLabel, 32

map, 35
map2SpatialLines (map2SpatialPolygons), 34
map2SpatialPolygons, 34, 54
MapGen2SL, 63
MapGen2SL (ContourLines2SLDF), 10

nearestPointOnLine, 36, 37, 58
nearestPointOnSegment, 36, 37, 58
nowrapRecenter, 38
nowrapSpatialLines, 38
nowrapSpatialPolygons (nowrapRecenter), 38

owinMclass (pppMclass), 44

pal2SpatialPolygons, 39
panel.levelplot, 33
panel.pointLabel, 40
pointLabel, 33, 41, 42
PolySet, 63
PolySet2SpatialLines
  (SpatialLines2PolySet), 62
PolySet2SpatialPolygons
  (SpatialLines2PolySet), 62
pppMclass, 44
print.shapehead (getinfo.shape), 15
pruneMap (map2SpatialPolygons), 34

readAsciiGrid, 45
readGPS, 46
readShapeLines, 48
readShapePoints, 49
readShapePoly, 50
readShapeSpatial, 52
readSplus, 54
rgeosStatus (checkPolygonsHoles), 7
Rgshhs, 55

smooth.spline, 33
snapPointsToLines, 36, 37, 58
Sobj_SpatialGrid (GE_SpatialGrid), 17
solarnoon (sunMmethods), 68

solarnoon, matrix, POSIXctMmethod
  (sunMmethods), 68
solarnoon, SpatialPoints, POSIXctMmethod
  (sunMmethods), 68
solarnoonMmethods (sunMmethods), 68
solarpos (sunMmethods), 68
solarpos, matrix, POSIXctMmethod
  (sunMmethods), 68
solarpos, SpatialPoints, POSIXctMmethod
  (sunMmethods), 68
solarposMmethods (sunMmethods), 68
sp, 38
spMlineLabel (lineLabel), 32
spMlineLabel, LinesMmethod (lineLabel), 32
spMlineLabel, SpatialLinesMmethod
  (lineLabel), 32
spMlineLabelMmethods (lineLabel), 32
spMpointLabel, 33
spMpointLabel (panelMpointLabel), 40
spMpointLabel, SpatialPointsMmethod
  (panelMpointLabel), 40
spMpointLabelMmethods
  (panelMpointLabel), 40
sp2Mmondrian, 59
sp2tmap, 60
sp2WB, 61
SpatialGridDataFrame, 45
SpatialGridDataFrameMclass, 45
SpatialLinesMclass, 10
SpatialLines2PolySet, 62
SpatialLinesMidPoints, 63
SpatialPolygons, 28, 30
SpatialPolygons2PolySet
  (SpatialLines2PolySet), 62
SpatialPolygonsDataFrame, 6, 7
spMcbind (spMcbindMmethods), 64
spMcbind, SpatialLinesDataFrame, data.frameMmethod
  (spMcbindMmethods), 64
spMcbind, SpatialLinesDataFrame, vectorMmethod
  (spMcbindMmethods), 64
spMcbind, SpatialPointsDataFrame, data.frameMmethod
  (spMcbindMmethods), 64
spMcbind, SpatialPointsDataFrame, vectorMmethod
  (spMcbindMmethods), 64
spMcbind, SpatialPolygonsDataFrame, data.frameMmethod
  (spMcbindMmethods), 64
spMcbind, SpatialPolygonsDataFrame, vectorMmethod
  (spMcbindMmethods), 64
spMcbindMmethods (spMcbindMmethods), 64
INDEX

(spCbind-methods), 64
spCbind-methods, 64
SplashDams, 65
spltot, 6, 7, 33, 41
spRbind (spRbind-methods), 66
spRbind, SpatialLines, SpatialLines-method
(spRbind-methods), 66
spRbind, SpatialLinesDataFrame, SpatialLinesDataFrame-method
(spRbind-methods), 66
spRbind, SpatialPoints, SpatialPoints-method
(spRbind-methods), 66
spRbind, SpatialPointsDataFrame, SpatialPointsDataFrame-method
(spRbind-methods), 66
spRbind, SpatialPolygons, SpatialPolygons-method
(spRbind-methods), 66
spRbind, SpatialPolygonsDataFrame, SpatialPolygonsDataFrame-method
(spRbind-methods), 66
spRbind-methods, 66
spsample, 12, 72
state.vbm, 67
sun-methods, 68
sunrised (sun-methods), 68
sunrised, matrix, POSIXct-method
(sun-methods), 68
sunrised, SpatialPoints, POSIXct-method
(sun-methods), 68
sunrised-methods (sun-methods), 68
symbolsInPolys, 71
text, 44
thigmophobe.labels, 44
thinnedSpatialPoly, 72
trackAzimuth (gzAzimuth), 20
unionSpatialPolygons, 73
write.dbf, 48–53
write.dta, 60
write.table, 45
writeAsciiGrid (readAsciiGrid), 45
writeLinesShape (readShapeLines), 48
writePointsShape (readShapePoints), 49
writePolyShape (readShapePoly), 50
writeSpatialShape (readShapeSpatial), 52
wrls_simpl, 75
xy.coords, 41